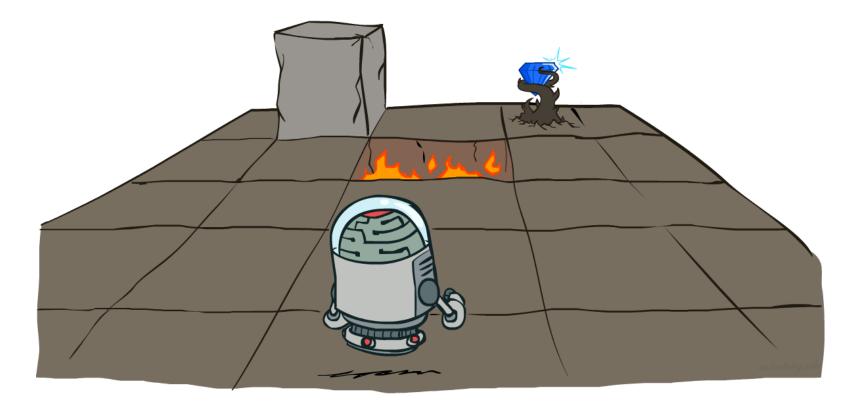
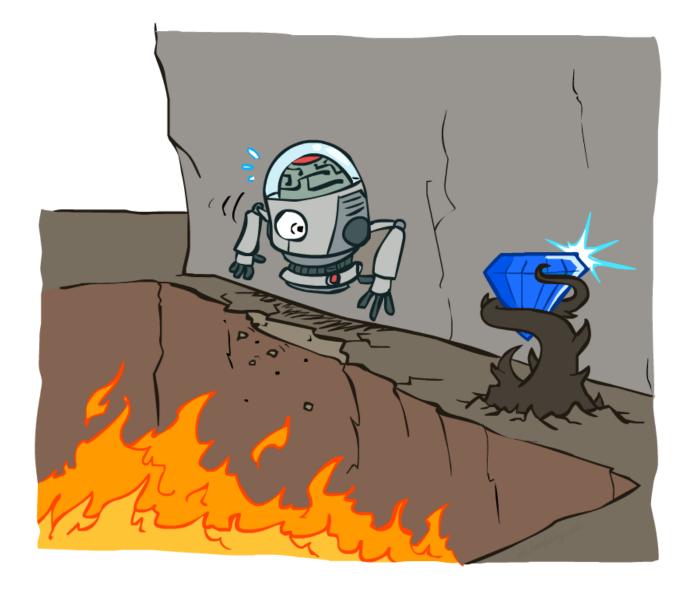
#### COE 4213564 Introduction to Artificial Intelligence Markov Decision Processes



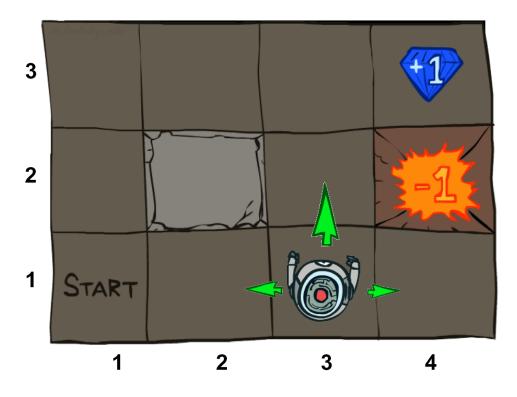
Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

#### Non-Deterministic Search



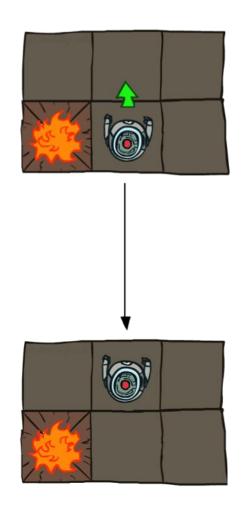
## Example: Grid World

- A maze-like problem
  - The agent lives in a grid
  - Walls block the agent's path
- Noisy movement: actions do not always go as planned
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10% East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
  - Small "living" reward each step (can be negative)
  - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

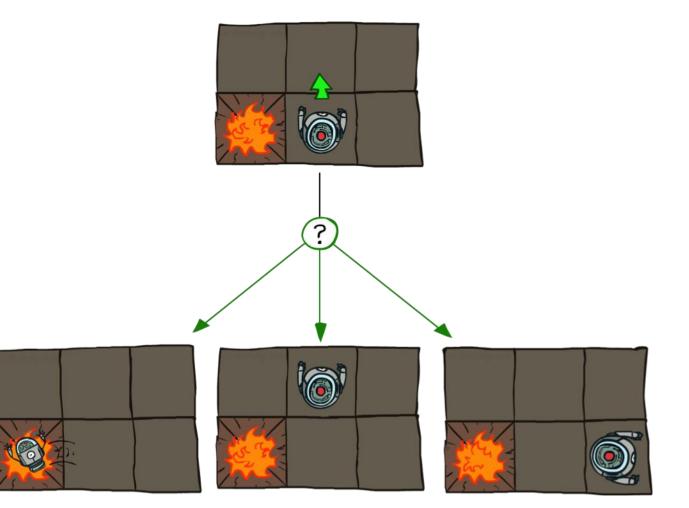


## Grid World Actions

#### Deterministic Grid World



#### Stochastic Grid World

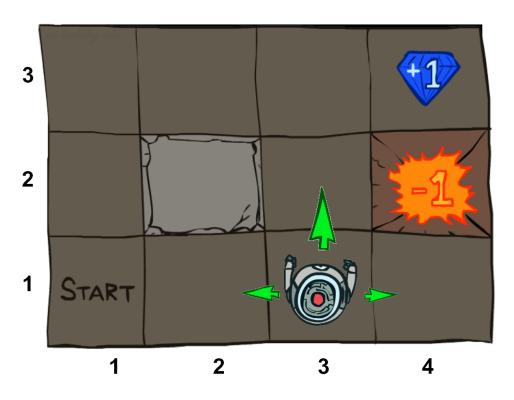


### Markov Decision Processes

- An MDP is defined by:
  - A set of states s ∈ S
  - A set of actions  $a \in A$
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s' | s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state
  - Maybe a terminal state

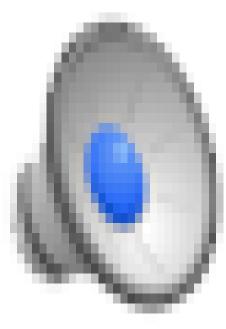
#### MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon



#### [Demo – gridworld manual intro (L8D1)]

## Video of Demo Gridworld Manual Intro



## What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)



Andrey Markov (1856-1922)

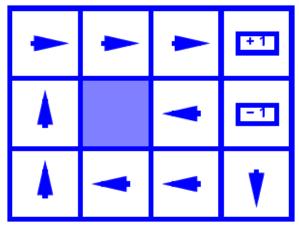
## Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy  $\pi^*: S \rightarrow A$ 
  - A policy π gives an action for each state
  - An optimal policy is one that maximizes expected utility if followed
  - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
  - It computed the action for a single state only

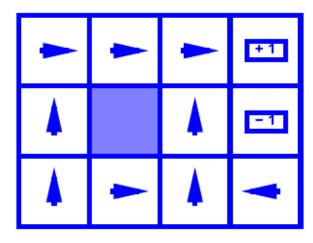


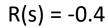
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

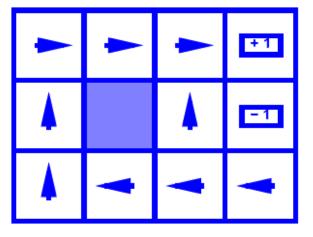
## **Optimal Policies**



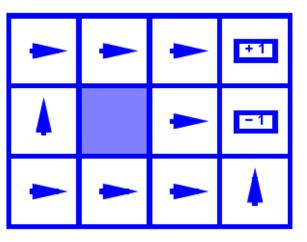
R(s) = -0.01



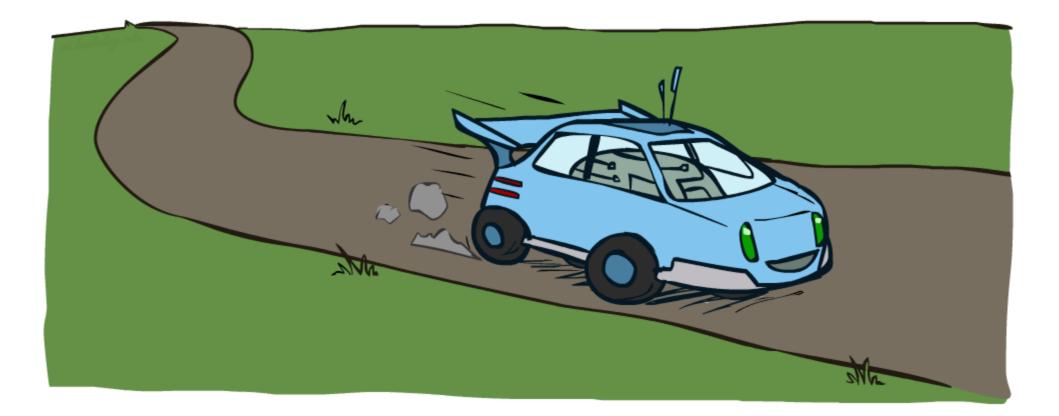




R(s) = -0.03

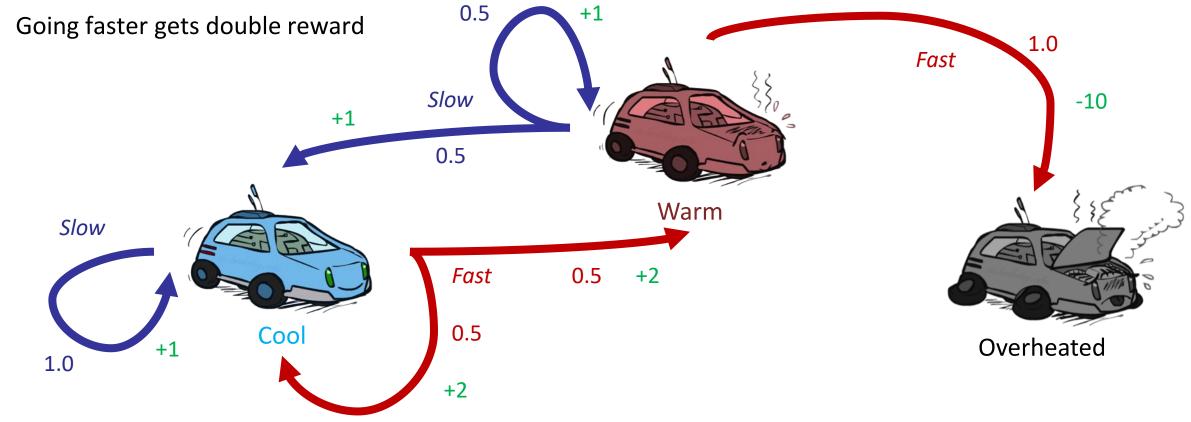


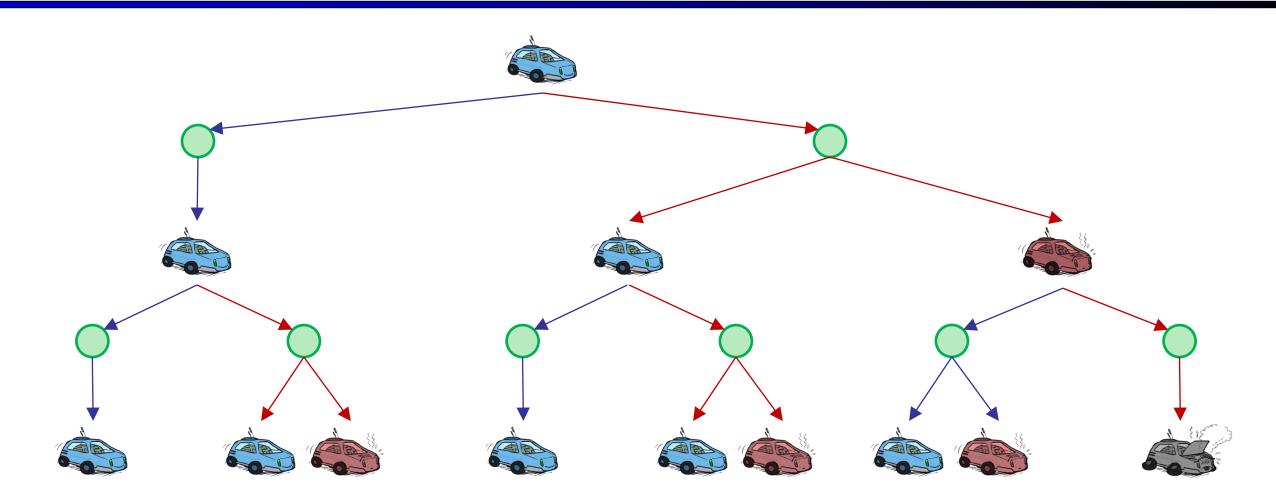
## Example: Racing



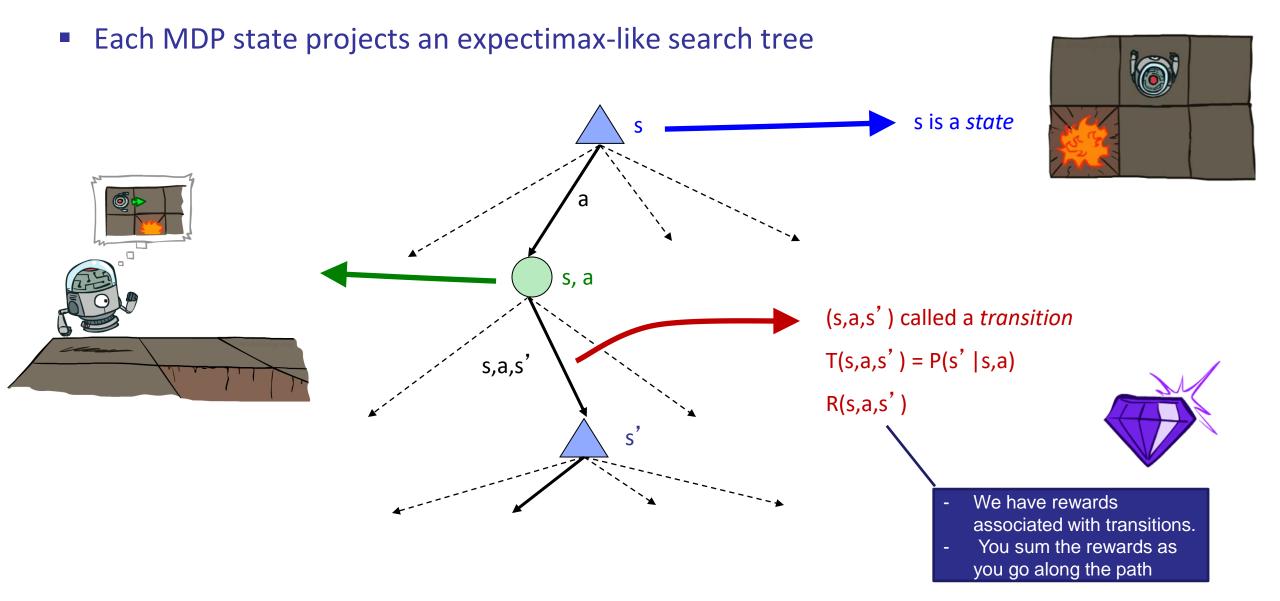
## Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

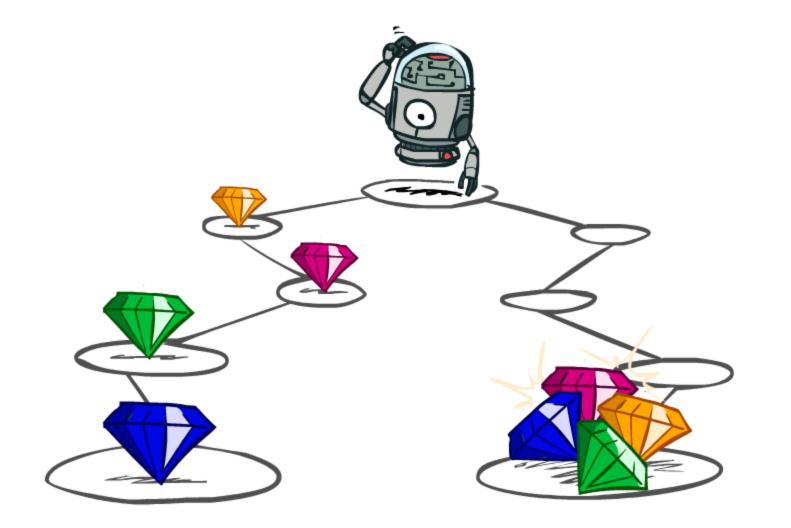




#### **MDP Search Trees**



### **Utilities of Sequences**



## **Utilities of Sequences**

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Sooner is better



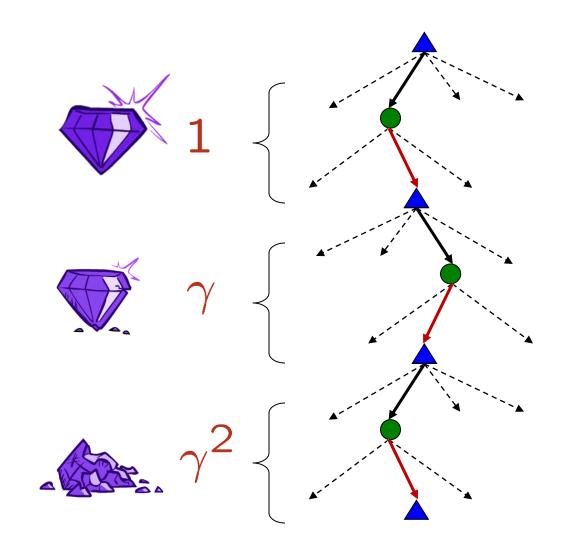
# Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially



# Discounting

- How to discount?
  - Each time we descend a level, we multiply in the discount once
- Why discount?
  - Sooner rewards probably do have higher utility than later rewards
  - Also helps our algorithms converge
- Example: discount of 0.5
  - Reward 1 at 1<sup>st</sup> step, 2 at the 2<sup>nd</sup>, 3 at the 3<sup>rd</sup> steps
  - U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
  - U([1,2,3]) < U([3,2,1])</p>



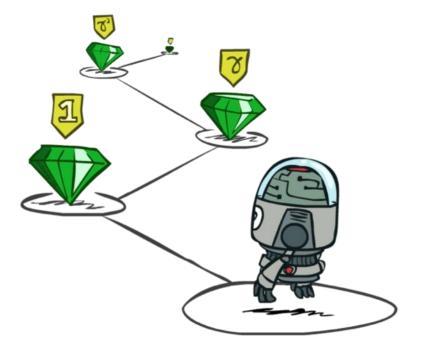
## **Stationary Preferences**

Theorem: if we assume stationary preferences over a sequence of rewards:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

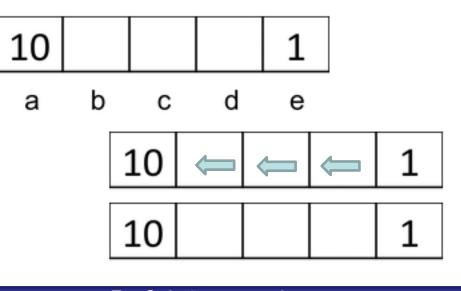
- Where r is the additional reward
- Then: there are only two ways to define utilities
  - Additive utility:  $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
  - Discounted utility:  $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$



# Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For γ = 1, what is the optimal policy?
- Quiz 2: For  $\gamma$  = 0.1, what is the optimal policy?



#### For Quiz 2 on state d:

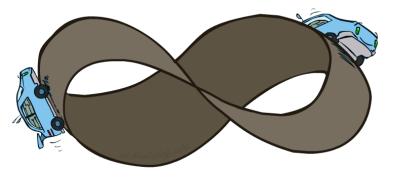
- Sum rewards
- Go to east :  $0 + \gamma * 1 = 0.1$
- Go to west :  $0 + \gamma * 0 + \gamma^2 * 0 + \gamma^3 * 10 = 0.01$
- So it is better to go to east in you are in state d
- In other states b and c, go to west
- Quiz 3: For which γ are West and East equally good when in state d?
   γ = 1 / sqrt(10)

## Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
  - Finite horizon: (similar to depth-limited search)
    - Terminate episodes after a fixed T steps (e.g. life)
    - Gives nonstationary policies (π depends on time left)
  - Discounting: use 0 < γ < 1</li>

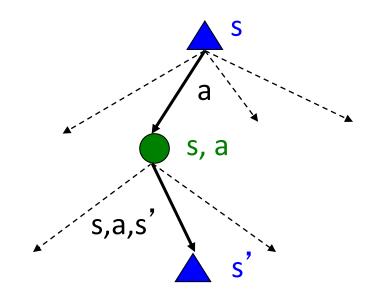
$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Sum of rewards are bounded (R<sub>max</sub> : Maximum reward)
- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

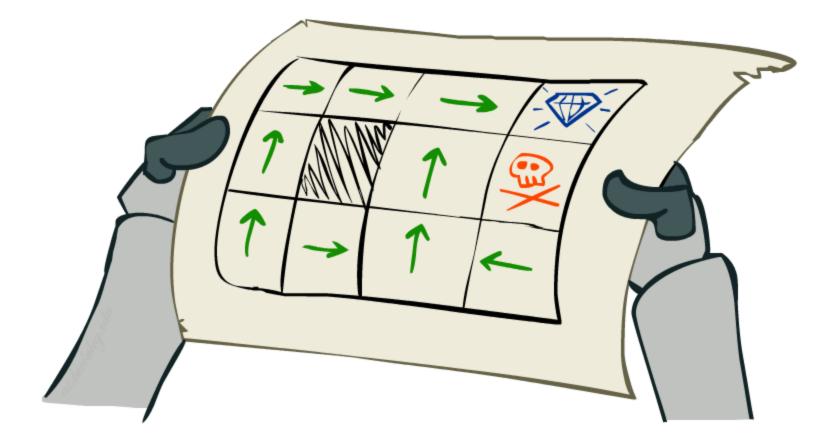


# **Recap: Defining MDPs**

- Markov decision processes:
  - Set of states S
  - Start state s<sub>0</sub>
  - Set of actions A
  - Transitions P(s'|s,a) (or T(s,a,s'))
  - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
  - Policy = Choice of action for each state
  - Utility = sum of (discounted) rewards

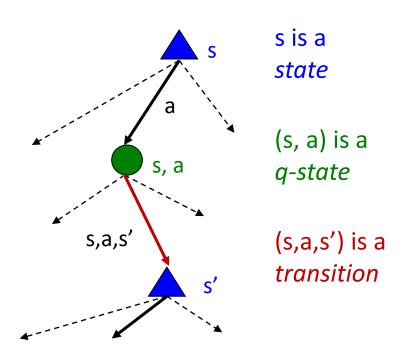


## Solving MDPs



## **Optimal Quantities**

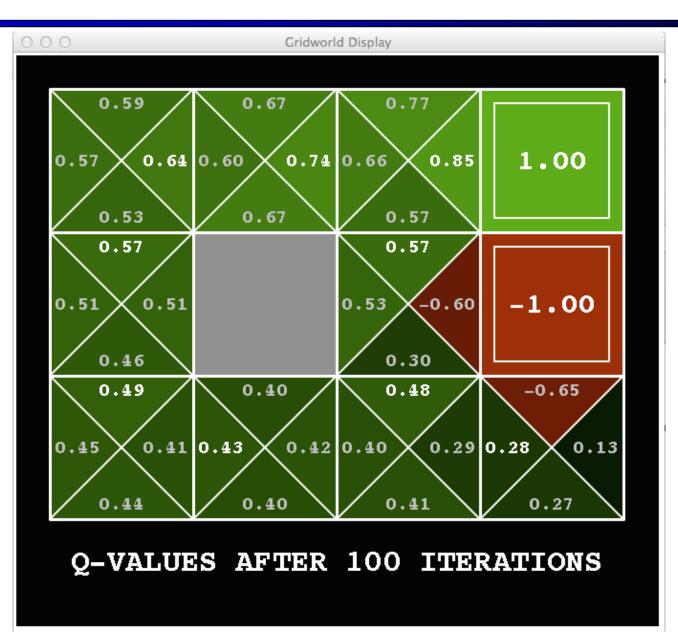
- The value (utility) of a state s:
  - V<sup>\*</sup>(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
  - Q<sup>\*</sup>(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
   π<sup>\*</sup>(s) = optimal action from state s



#### Snapshot of Demo – Gridworld V Values

| 000 | Gridworld Display           |        |        |        |  |
|-----|-----------------------------|--------|--------|--------|--|
|     | 0.64 →                      | 0.74 ▸ | 0.85 ) | 1.00   |  |
|     | <b>^</b>                    |        | •      |        |  |
|     | 0.57                        |        | 0.57   | -1.00  |  |
|     | <b>^</b>                    |        | •      |        |  |
|     | 0.49                        | ∢ 0.43 | 0.48   | ∢ 0.28 |  |
|     | VALUES AFTER 100 ITERATIONS |        |        |        |  |

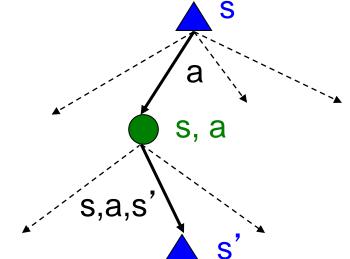
#### Snapshot of Demo – Gridworld Q Values

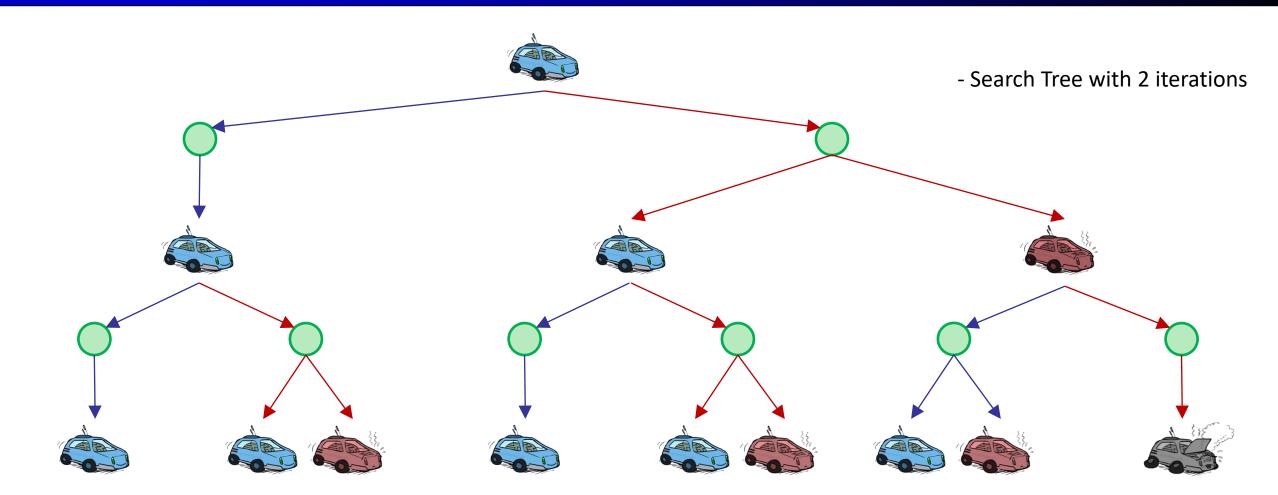


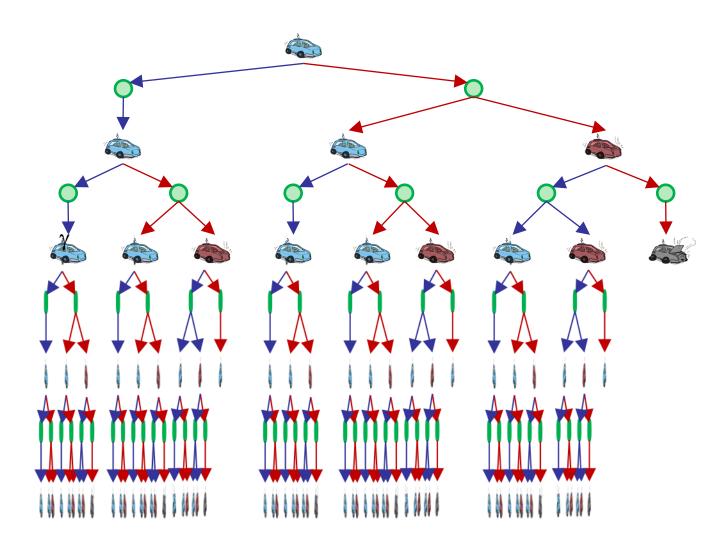
## Values of States

- Fundamental operation: compute the (expectimax) value of a state
  - Expected utility under optimal action
  - Average sum of (discounted) rewards
  - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

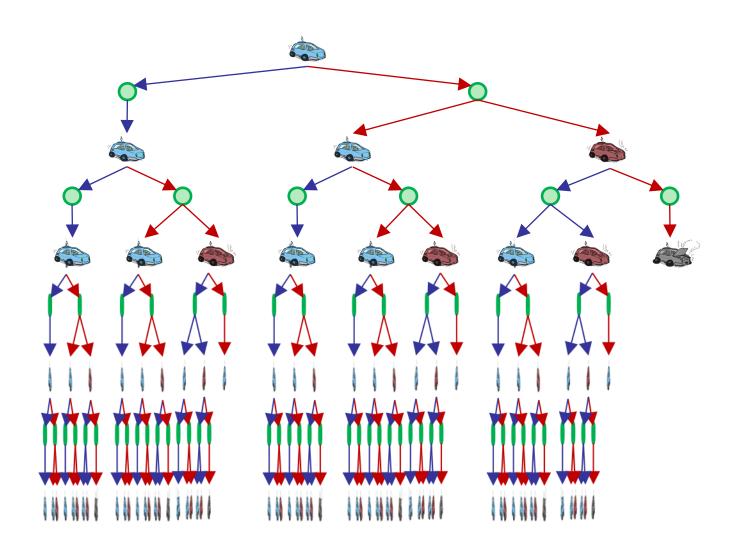






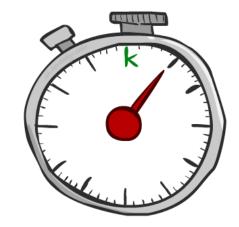
- We play the game long time, not stop after 2 iterations
- Some branches are the same (repetitions)
- Use caching or bottomup dynamic programming

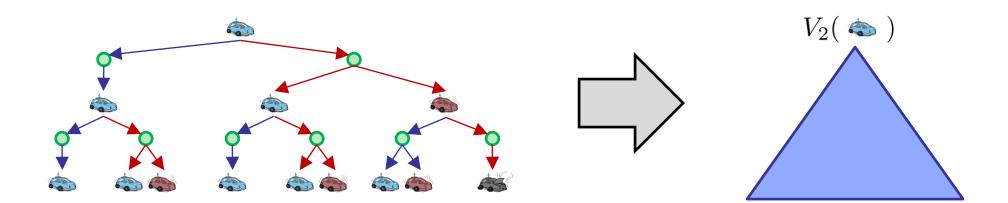
- We're doing way too much work with expectimax!
- Problem: States are repeated
  - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
  - Idea: Do a depth-limited computation, but with increasing depths until change is small
  - Note: deep parts of the tree eventually don't matter if γ < 1</li>



### **Time-Limited Values**

- Key idea: time-limited values
- Define V<sub>k</sub>(s) to be the optimal value of s if the game ends in k more time steps
  - Equivalently, it's what a depth-k expectimax would give from s





| 0 0                       | Gridworl | d Display |      |
|---------------------------|----------|-----------|------|
|                           |          | <b>^</b>  |      |
| 0.00                      | 0.00     | 0.00      | 0.00 |
|                           |          | <b>^</b>  |      |
| 0.00                      |          | 0.00      | 0.00 |
|                           |          | <b>^</b>  |      |
| 0.00                      | 0.00     | 0.00      | 0.00 |
| VALUES AFTER O ITERATIONS |          |           |      |

| 0 0 | 0                         | Gridworl | d Display |       |  |
|-----|---------------------------|----------|-----------|-------|--|
| ſ   |                           |          |           |       |  |
|     | 0.00                      | 0.00     | 0.00 >    | 1.00  |  |
|     | <b>^</b>                  |          |           |       |  |
|     | 0.00                      |          | ∢ 0.00    | -1.00 |  |
|     | <b>^</b>                  | <b>^</b> | <b>^</b>  |       |  |
|     | 0.00                      | 0.00     | 0.00      | 0.00  |  |
|     |                           |          |           | -     |  |
|     | VALUES AFTER 1 ITERATIONS |          |           |       |  |

| O O Gridworld Display     |           |           |       |
|---------------------------|-----------|-----------|-------|
| •                         | 0.00 >    | 0.72 )    | 1.00  |
| •<br>0.00                 |           | •<br>0.00 | -1.00 |
| •                         | •<br>0.00 | •<br>0.00 | 0.00  |
| VALUES AFTER 2 ITERATIONS |           |           |       |

k=3

| 0 | O O Gridworld Display     |           |           |       |  |
|---|---------------------------|-----------|-----------|-------|--|
| ŗ | 0.00 )                    | 0.52 )    | 0.78 )    | 1.00  |  |
|   | •<br>0.00                 |           | •<br>0.43 | -1.00 |  |
|   | •<br>0.00                 | •<br>0.00 | •<br>0.00 | 0.00  |  |
|   | VALUES AFTER 3 ITERATIONS |           |           |       |  |

k=4

| Gridworld Display |                           |        |           |        |
|-------------------|---------------------------|--------|-----------|--------|
|                   | 0.37 ▶                    | 0.66 ) | 0.83 →    | 1.00   |
|                   | •<br>0.00                 |        | •<br>0.51 | -1.00  |
|                   | •<br>0.00                 | 0.00 → | •<br>0.31 | ∢ 0.00 |
|                   | VALUES AFTER 4 ITERATIONS |        |           |        |

| 00                        | ○ ○ ○ Gridworld Display |        |           |        |
|---------------------------|-------------------------|--------|-----------|--------|
|                           | 0.51 →                  | 0.72 → | 0.84 )    | 1.00   |
|                           | •<br>0.27               |        | •<br>0.55 | -1.00  |
|                           | •                       | 0.22 → | •<br>0.37 | ∢ 0.13 |
| VALUES AFTER 5 ITERATIONS |                         |        |           |        |

| 00                        | C Cridworld Display |        |           |        |
|---------------------------|---------------------|--------|-----------|--------|
|                           | 0.59 →              | 0.73 → | 0.85 )    | 1.00   |
|                           | •<br>0.41           |        | •<br>0.57 | -1.00  |
|                           | •<br>0.21           | 0.31 → | •<br>0.43 | ∢ 0.19 |
| VALUES AFTER 6 ITERATIONS |                     |        |           |        |

| 0 0 | 0        | Gridworl | d Display | -      |
|-----|----------|----------|-----------|--------|
|     | 0.62 )   | 0.74 ▸   | 0.85 )    | 1.00   |
|     | <b>^</b> |          | <b>^</b>  |        |
|     | 0.50     |          | 0.57      | -1.00  |
|     | <b>^</b> |          | <b>^</b>  |        |
|     | 0.34     | 0.36 )   | 0.45      | ◀ 0.24 |
|     | VALUE    | S AFTER  | 7 ITERA   | FIONS  |

| 00 | 0         | Gridworl | d Display |        |
|----|-----------|----------|-----------|--------|
|    | 0.63 )    | 0.74 →   | 0.85 )    | 1.00   |
|    | •         |          | •         |        |
|    | 0.53      |          | 0.57      | -1.00  |
|    | •<br>0.42 | 0.39 →   | •<br>0.46 | ∢ 0.26 |
|    | VALUE     | S AFTER  | 8 ITERA   | FIONS  |

| 00                        | 0         | Gridworl | d Display |        |
|---------------------------|-----------|----------|-----------|--------|
|                           | 0.64 )    | 0.74 ▸   | 0.85 )    | 1.00   |
|                           | ▲<br>0.55 |          | ▲<br>0.57 | -1.00  |
|                           | ▲<br>0.46 | 0.40 →   | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 9 ITERATIONS |           |          |           |        |

| 00 | C C C Gridworld Display    |        |           |        |  |
|----|----------------------------|--------|-----------|--------|--|
|    | 0.64 )                     | 0.74 ▸ | 0.85 )    | 1.00   |  |
|    | •<br>0.56                  |        | •<br>0.57 | -1.00  |  |
|    | ▲<br>0.48                  | ∢ 0.41 | •<br>0.47 | ∢ 0.27 |  |
|    | VALUES AFTER 10 ITERATIONS |        |           |        |  |

| Gridworld Display |         |           |        |  |
|-------------------|---------|-----------|--------|--|
| 0.64 )            | 0.74 →  | 0.85 )    | 1.00   |  |
| •<br>0.56         |         | •<br>0.57 | -1.00  |  |
| •<br>0.48         | ∢ 0.42  | •<br>0.47 | ∢ 0.27 |  |
| VALUE             | S AFTER | 11 ITERA  | TIONS  |  |

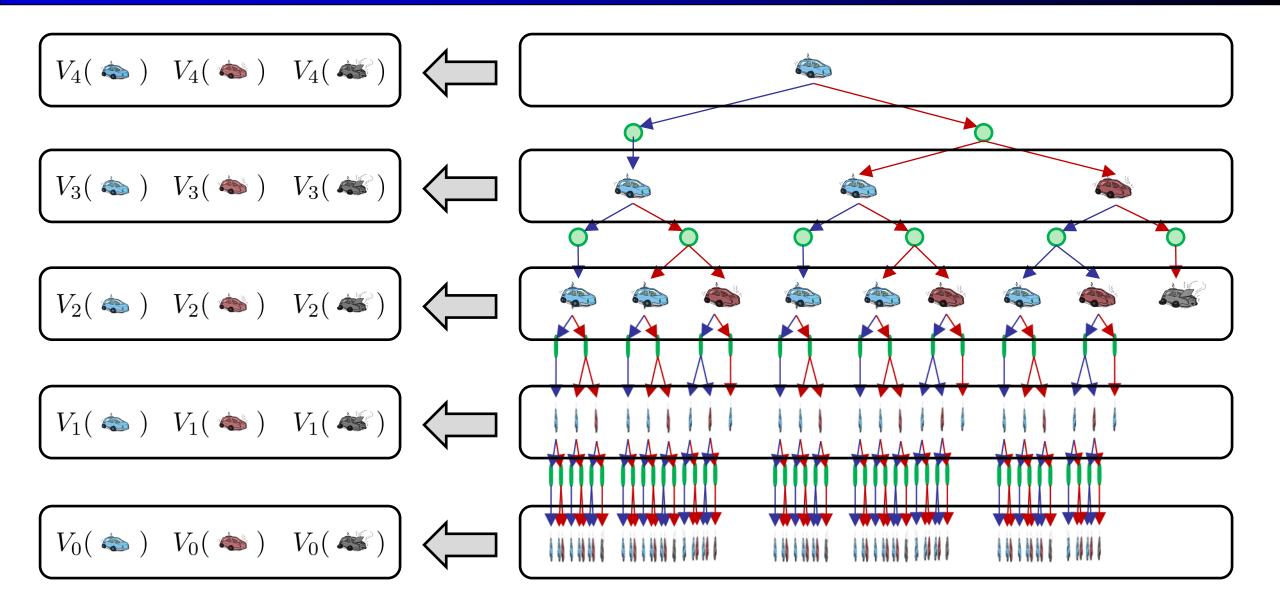
| 00 | ○ ○ ○ Gridworld Display    |        |           |        |  |
|----|----------------------------|--------|-----------|--------|--|
|    | 0.64 )                     | 0.74 ▸ | 0.85 )    | 1.00   |  |
|    | •<br>0.57                  |        | •<br>0.57 | -1.00  |  |
|    | ▲<br>0.49                  | ∢ 0.42 | •<br>0.47 | ∢ 0.28 |  |
|    | VALUES AFTER 12 ITERATIONS |        |           |        |  |

| 0 0       | Gridworld Display |           |        |  |
|-----------|-------------------|-----------|--------|--|
| 0.64      | 0.74 →            | 0.85 →    | 1.00   |  |
| •<br>0.57 |                   | •<br>0.57 | -1.00  |  |
| ▲<br>0.49 | ∢ 0.43            | ▲<br>0.48 | ∢ 0.28 |  |

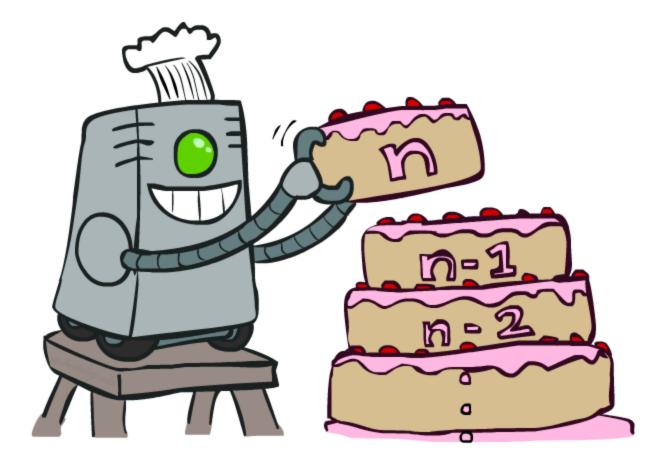
VALUES AFTER 100 ITERATIONS

- Values converge
   and
- don't change much after certain number of iterations

## Computing Time-Limited Values (Compute v<sub>0</sub>, v<sub>1</sub>, v<sub>2</sub>, ...)



## Value Iteration

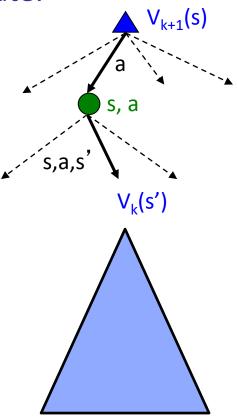


# Value Iteration

- Start with V<sub>0</sub>(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V<sub>k</sub>(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

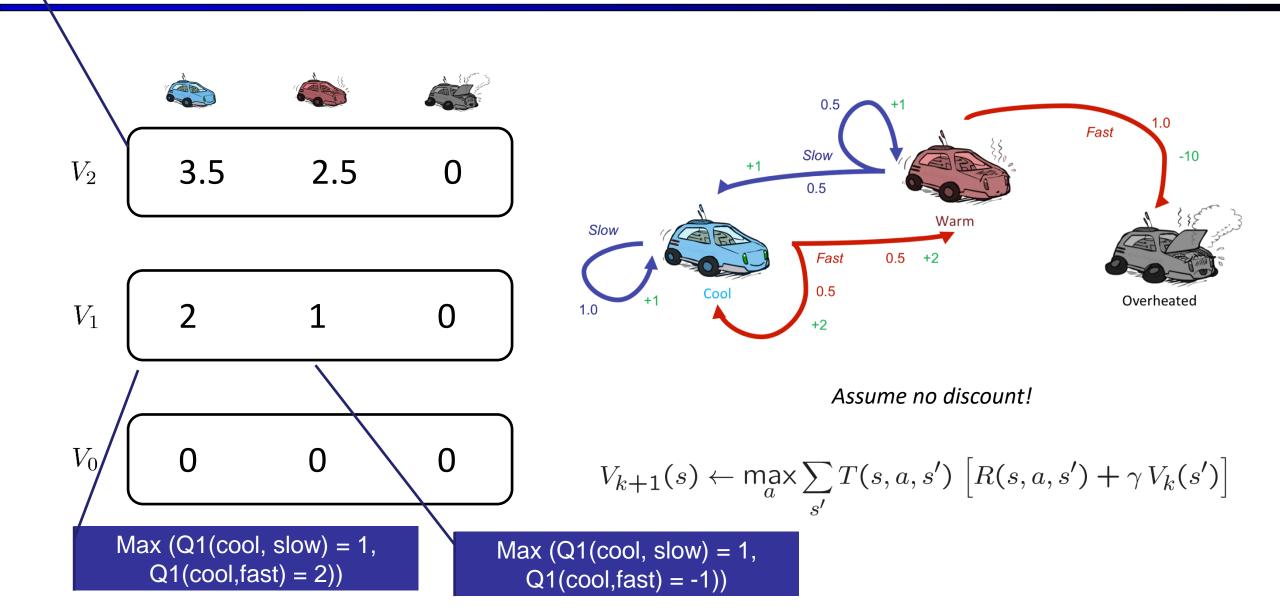
- Repeat until convergence
- Complexity of each iteration: O(S<sup>2</sup>A)
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do



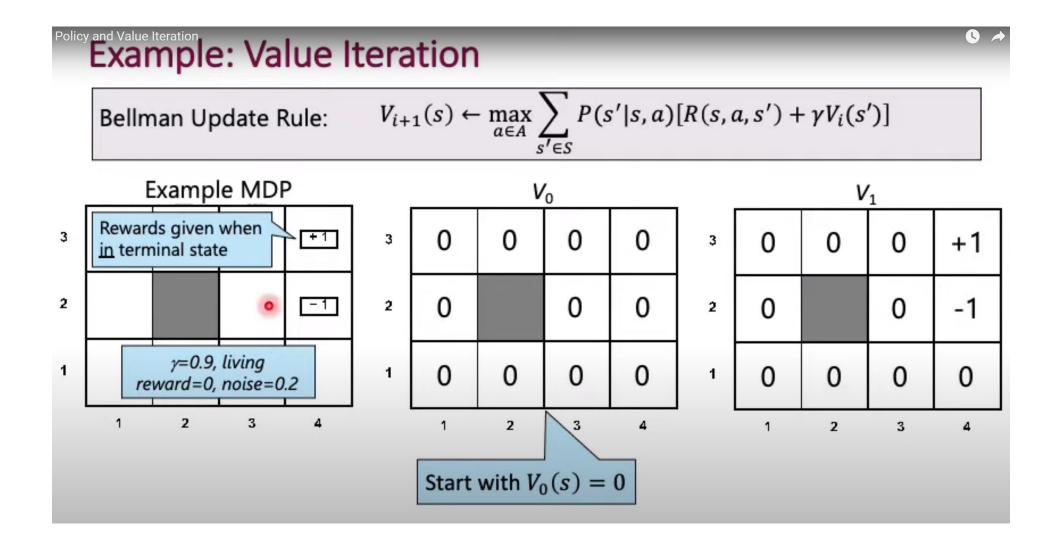
## **Example: Value Iteration**

Max (Q2(cool, slow) = 1+2,

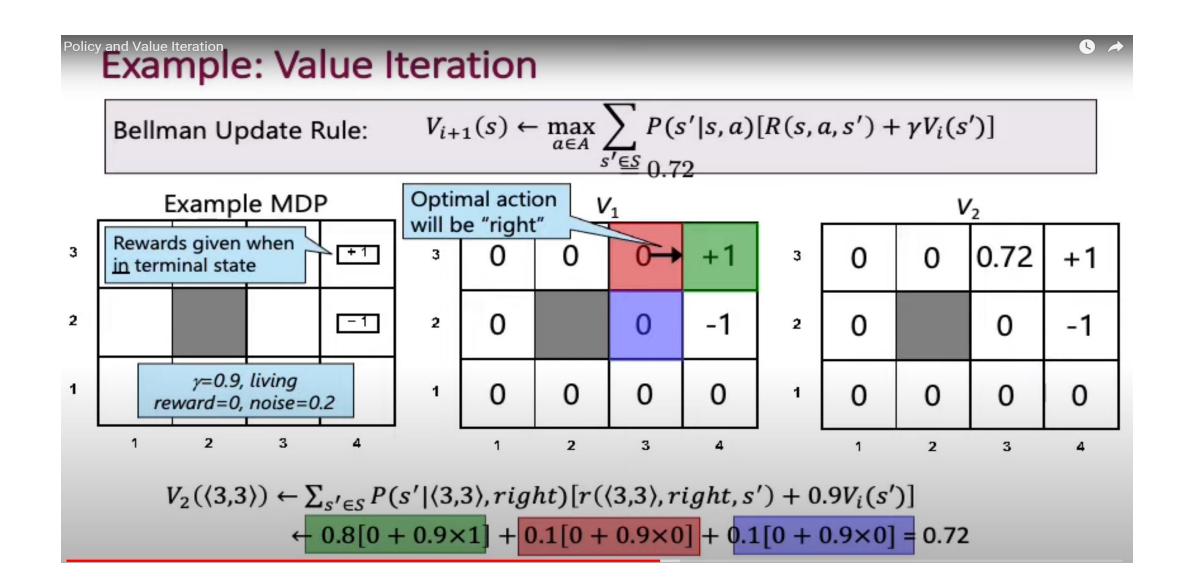
Q2(cool, fast) = ((2+2)+(2+1))/2=3.5)



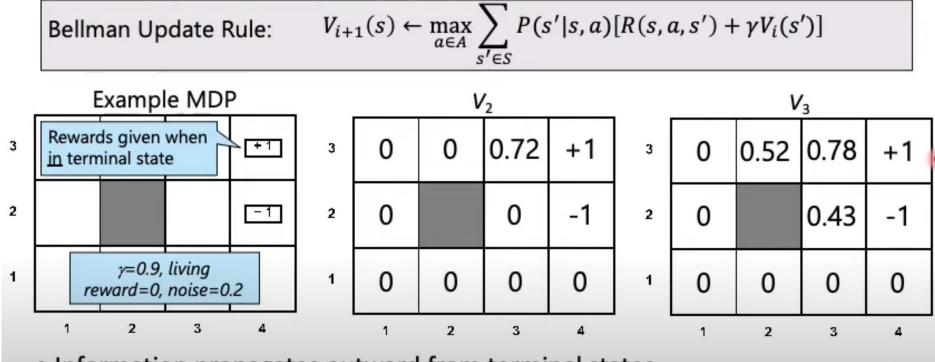
## **Example: Value Iteration**



## **Example: Value Iteration**



#### Policy and Value Iteration Example: Value Iteration



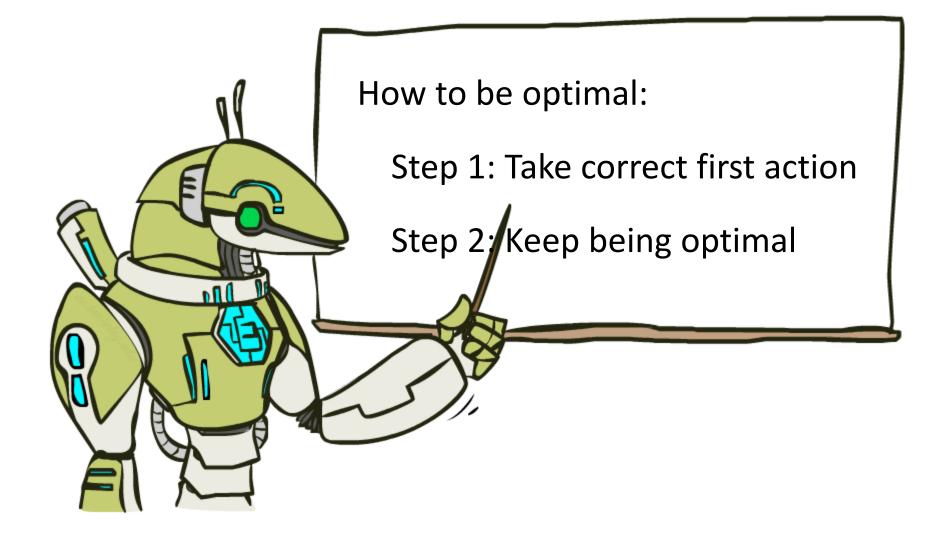
L

Information propagates outward from terminal states

# GridWorld: Dynamic Programming Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

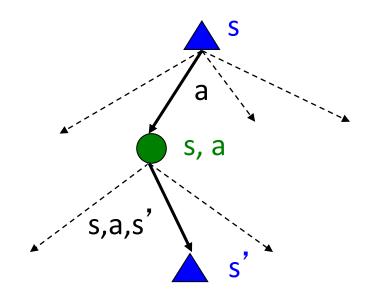
## The Bellman Equations



# The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$



These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

# Value Iteration

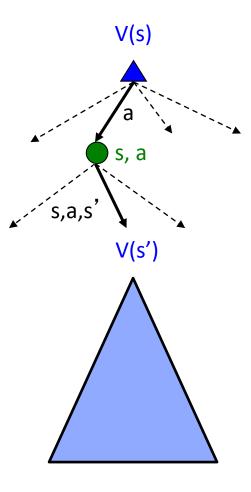
Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

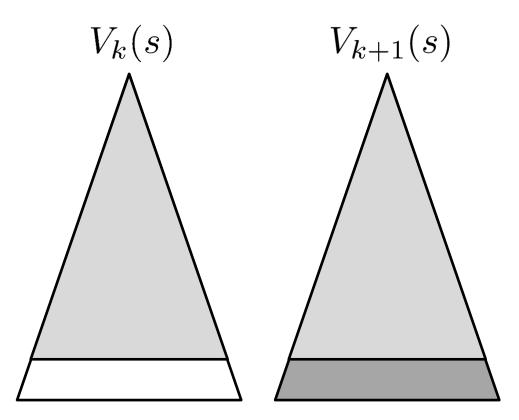
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
  - ... though the V<sub>k</sub> vectors are also interpretable as time-limited values



# Convergence\*

- How do we know the V<sub>k</sub> vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state V<sub>k</sub> and V<sub>k+1</sub> can be viewed as depth k+1 expectimax results in nearly identical search trees
  - The difference is that on the bottom layer, V<sub>k+1</sub> has actual rewards while V<sub>k</sub> has zeros
  - That last layer is at best all R<sub>MAX</sub>
  - It is at worst R<sub>MIN</sub>
  - But everything is discounted by γ<sup>k</sup> that far out
  - So  $V_k$  and  $V_{k+1}$  are at most ( $\gamma^k * \max[R]$ ) different
  - So as k increases, the values converge



## Value iteration algorithm

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function

inputs: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a),

rewards R(s,a,s'), discount \gamma

\epsilon, the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero

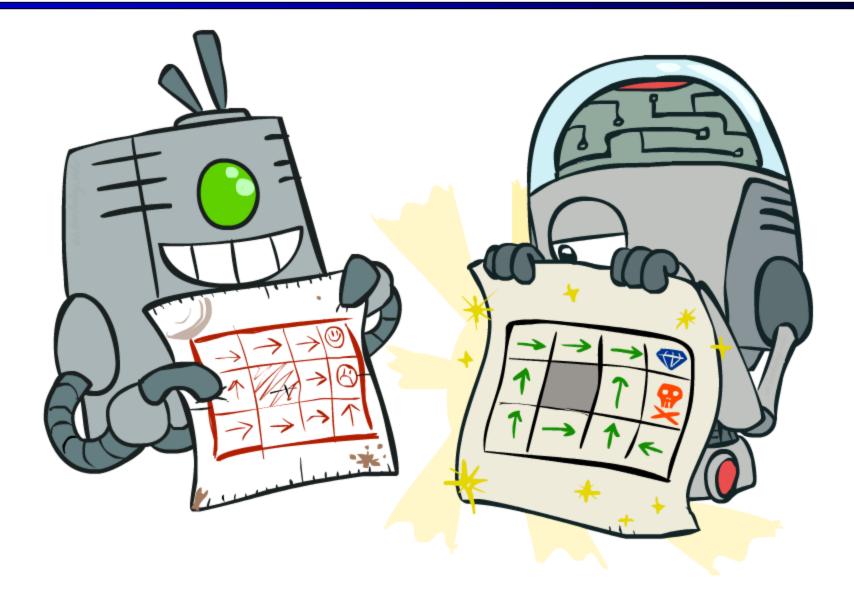
\delta, the maximum relative change in the utility of any state
```

```
repeat
```

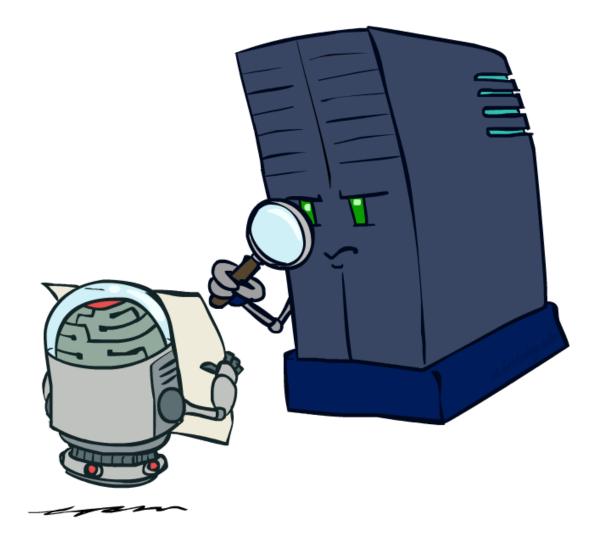
```
\begin{array}{l} U \leftarrow U'; \, \delta \leftarrow 0 \\ \text{for each state $s$ in $S$ do} \\ U'[s] \leftarrow \max_{a \in A(s)} \text{ Q-VALUE}(mdp, s, a, U) \\ \text{if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta \leq \epsilon (1 - \gamma) / \gamma \\ \text{return $U$} \end{array}
```

Figure 16.6 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (16.12).

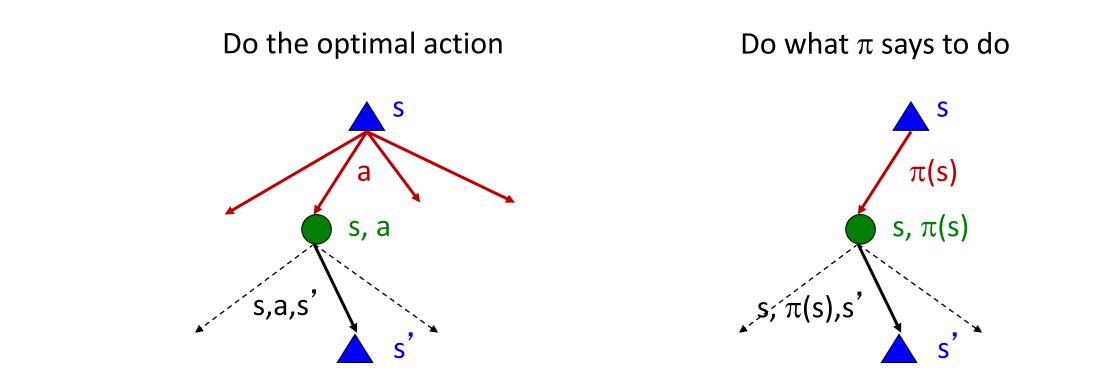
# Policy Methods



# **Policy Evaluation**



## **Fixed Policies**

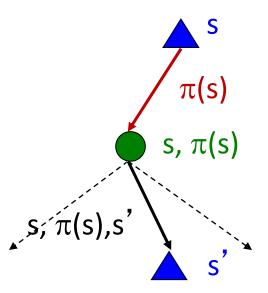


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy  $\pi(s)$ , then the tree would be simpler only one action per state
  - ... though the tree's value would depend on which policy we fixed

# Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
   V<sup>π</sup>(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

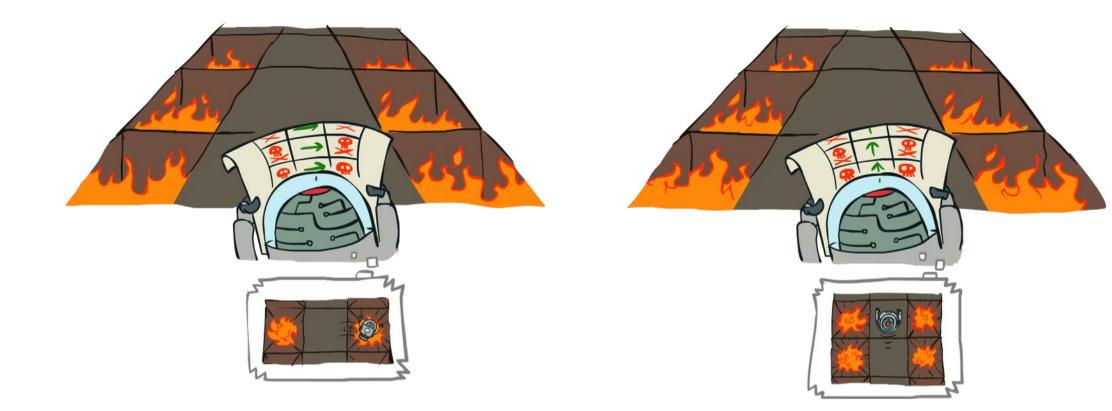
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



# **Example: Policy Evaluation**

Always Go Right

Always Go Forward



# **Example: Policy Evaluation**

#### Always Go Right

| -10.00 | 100.00  | -10.00 |
|--------|---------|--------|
| -10.00 | 1.09 🕨  | -10.00 |
| -10.00 | -7.88 🕨 | -10.00 |
| -10.00 | -8.69 ▶ | -10.00 |

### Always Go Forward



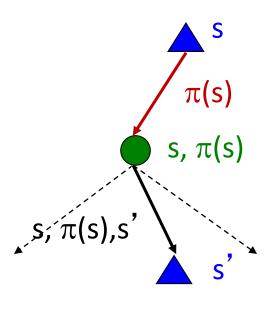
**Bad Policy** 

**Good Policy** 

# **Policy Evaluation**

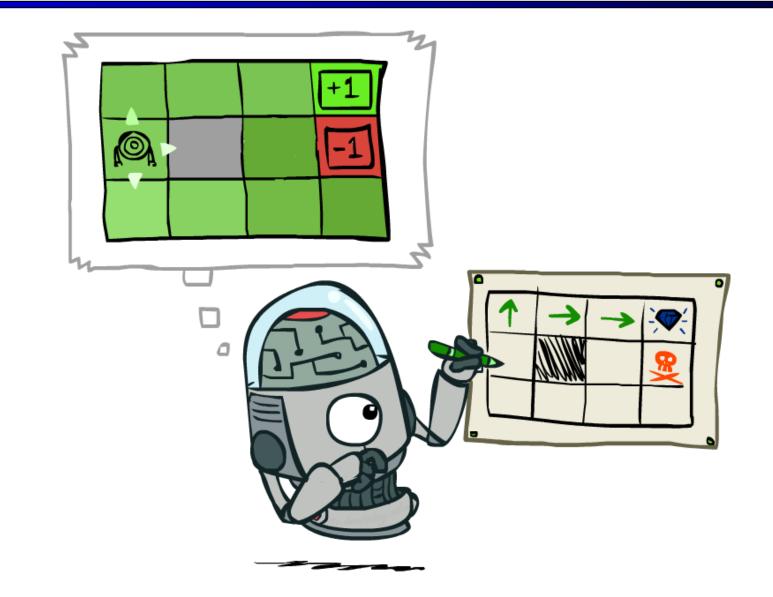
- How do we calculate the V's for a fixed policy  $\pi$ ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$
  
$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$



- Efficiency: O(S<sup>2</sup>) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
  - Solve with Matlab (or your favorite linear system solver)

# **Policy Extraction**



# **Computing Actions from Values**

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)

| 0.95 ♪    | 0.96 ኑ | 0.98 ▶ | 1.00  |
|-----------|--------|--------|-------|
| ▲<br>0.94 |        | ∢ 0.89 | -1.00 |
| ▲<br>0.92 | ∢ 0.91 | ∢ 0.90 | 0.80  |

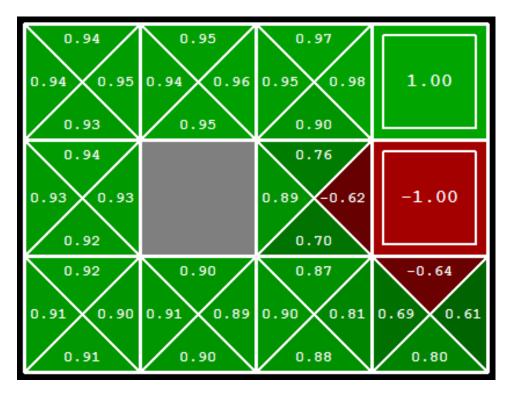
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

# **Computing Actions from Q-Values**

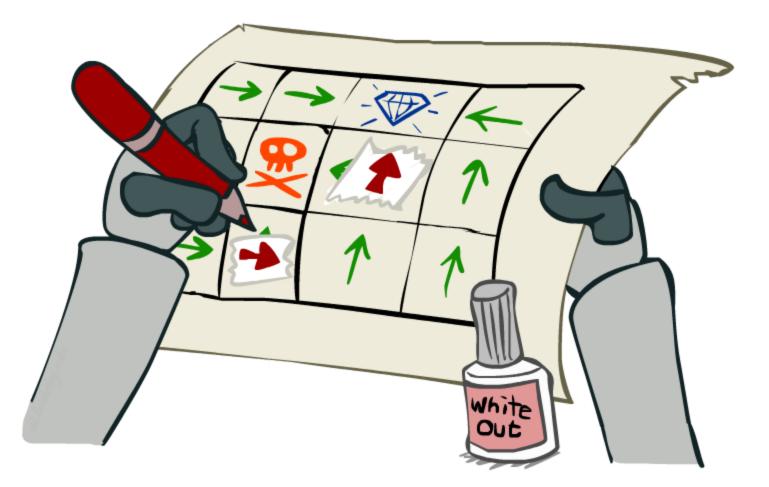
- Let's imagine we have the optimal q-values:
- How should we act?
  - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

# **Policy Iteration**

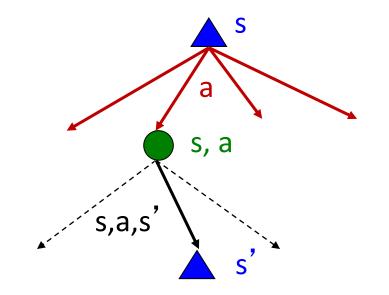


# Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S<sup>2</sup>A) per iteration



- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

| 0 0                       | Gridworl | d Display |      |  |
|---------------------------|----------|-----------|------|--|
|                           |          | <b>^</b>  |      |  |
| 0.00                      | 0.00     | 0.00      | 0.00 |  |
| <b>^</b>                  |          | <b>^</b>  |      |  |
| 0.00                      |          | 0.00      | 0.00 |  |
| <b>^</b>                  |          | <b>^</b>  |      |  |
| 0.00                      | 0.00     | 0.00      | 0.00 |  |
| VALUES AFTER O ITERATIONS |          |           |      |  |

| 0 0 | 0                         | Gridworl | d Display |       |  |
|-----|---------------------------|----------|-----------|-------|--|
| ſ   | •                         | •        |           |       |  |
|     | 0.00                      | 0.00     | 0.00 →    | 1.00  |  |
|     | <b>^</b>                  |          |           |       |  |
|     | 0.00                      |          | ∢ 0.00    | -1.00 |  |
|     | <b>^</b>                  | <b>^</b> | <b>^</b>  |       |  |
|     | 0.00                      | 0.00     | 0.00      | 0.00  |  |
|     |                           |          |           | •     |  |
|     | VALUES AFTER 1 ITERATIONS |          |           |       |  |

| 0 0                       | Gridworl  | d Display |       |
|---------------------------|-----------|-----------|-------|
| •                         | 0.00 >    | 0.72 )    | 1.00  |
| •<br>0.00                 |           | •<br>0.00 | -1.00 |
| •                         | •<br>0.00 | •<br>0.00 | 0.00  |
| VALUES AFTER 2 ITERATIONS |           |           |       |

k=3

| 0 | 0         | Gridworl  | d Display |       |
|---|-----------|-----------|-----------|-------|
| ŗ | 0.00 )    | 0.52 )    | 0.78 )    | 1.00  |
|   | •<br>0.00 |           | •<br>0.43 | -1.00 |
|   | •<br>0.00 | •<br>0.00 | •<br>0.00 | 0.00  |
|   | VALUE     | S AFTER   | 3 ITERA   | FIONS |

k=4

| 00 | 0         | Gridworl | d Display |        |
|----|-----------|----------|-----------|--------|
|    | 0.37 ▶    | 0.66 )   | 0.83 →    | 1.00   |
|    | •<br>0.00 |          | •<br>0.51 | -1.00  |
|    | •<br>0.00 | 0.00 →   | •<br>0.31 | ∢ 0.00 |
|    | VALUE     | S AFTER  | 4 ITERA   | FIONS  |

| 00                        | 0         | Gridworl | d Display |        |
|---------------------------|-----------|----------|-----------|--------|
|                           | 0.51 →    | 0.72 →   | 0.84 )    | 1.00   |
|                           | •<br>0.27 |          | •<br>0.55 | -1.00  |
|                           | •         | 0.22 →   | •<br>0.37 | ∢ 0.13 |
| VALUES AFTER 5 ITERATIONS |           |          |           |        |

| 00                        | C C Gridworld Display |        |           |        |
|---------------------------|-----------------------|--------|-----------|--------|
|                           | 0.59 →                | 0.73 → | 0.85 )    | 1.00   |
|                           | •<br>0.41             |        | •<br>0.57 | -1.00  |
|                           | •<br>0.21             | 0.31 → | •<br>0.43 | ∢ 0.19 |
| VALUES AFTER 6 ITERATIONS |                       |        |           |        |

| 0 0 | 0        | Gridworl | d Display | -      |
|-----|----------|----------|-----------|--------|
|     | 0.62 )   | 0.74 ▸   | 0.85 )    | 1.00   |
|     | <b>^</b> |          | <b>^</b>  |        |
|     | 0.50     |          | 0.57      | -1.00  |
|     | <b>^</b> |          | <b>^</b>  |        |
|     | 0.34     | 0.36 )   | 0.45      | ◀ 0.24 |
|     | VALUE    | S AFTER  | 7 ITERA   | FIONS  |

| 00 | 0         | Gridworl | d Display |        |
|----|-----------|----------|-----------|--------|
|    | 0.63 )    | 0.74 →   | 0.85 )    | 1.00   |
|    | •         |          | •         |        |
|    | 0.53      |          | 0.57      | -1.00  |
|    | •<br>0.42 | 0.39 ▸   | •<br>0.46 | ∢ 0.26 |
|    | VALUE     | S AFTER  | 8 ITERA   | FIONS  |

| 00                        | 0         | Gridworl | d Display |        |
|---------------------------|-----------|----------|-----------|--------|
|                           | 0.64 )    | 0.74 ▸   | 0.85 )    | 1.00   |
|                           | ▲<br>0.55 |          | ▲<br>0.57 | -1.00  |
|                           | ▲<br>0.46 | 0.40 →   | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 9 ITERATIONS |           |          |           |        |

| 00 | C C Cridworld Display      |        |           |        |  |
|----|----------------------------|--------|-----------|--------|--|
|    | 0.64 )                     | 0.74 ▸ | 0.85 )    | 1.00   |  |
|    | ▲<br>0.56                  |        | •<br>0.57 | -1.00  |  |
|    | ▲<br>0.48                  | ∢ 0.41 | •<br>0.47 | ◀ 0.27 |  |
|    | VALUES AFTER 10 ITERATIONS |        |           |        |  |

| Gridworld Display |         |           |        |  |
|-------------------|---------|-----------|--------|--|
| 0.64 )            | 0.74 )  | 0.85 )    | 1.00   |  |
| •<br>0.56         |         | •<br>0.57 | -1.00  |  |
| ▲<br>0.48         | ∢ 0.42  | •<br>0.47 | ∢ 0.27 |  |
| VALUE             | S AFTER | 11 ITERA  | TIONS  |  |

| 00 | ○ ○ ○ Gridworld Display    |        |           |        |  |
|----|----------------------------|--------|-----------|--------|--|
|    | 0.64 )                     | 0.74 ▸ | 0.85 )    | 1.00   |  |
|    | ▲<br>0.57                  |        | ▲<br>0.57 | -1.00  |  |
|    | ▲<br>0.49                  | ∢ 0.42 | •<br>0.47 | ∢ 0.28 |  |
|    | VALUES AFTER 12 ITERATIONS |        |           |        |  |

| 00        | Gridworl  | d Display |        |
|-----------|-----------|-----------|--------|
| 0.64 )    | 0.74 →    | 0.85 →    | 1.00   |
| •<br>0.57 |           | •<br>0.57 | -1.00  |
| •<br>0.49 | ∢ 0.43    | ▲<br>0.48 | ∢ 0.28 |
| VALUES    | S AFTER 1 | LOO ITERA | ATIONS |

# **Policy Iteration**

- Alternative approach for optimal values:
  - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
  - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - Can converge (much) faster under some conditions

## **Policy Iteration**

- Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:
  - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
  - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

## Policy iteration algorithm

```
function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a)
local variables: U, a vector of utilities for states in S, initially zero
\pi, a policy vector indexed by state, initially random
```

```
repeat

U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)

unchanged? \leftarrow true

for each state s in S do

a^* \leftarrow \operatorname{argmax} Q\text{-VALUE}(mdp, s, a, U)

a \in A(s)

if Q\text{-VALUE}(mdp, s, a^*, U) > Q\text{-VALUE}(mdp, s, \pi[s], U) then

\pi[s] \leftarrow a^*; unchanged? \leftarrow false

until unchanged?

return \pi
```

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

## Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
  - Every iteration updates both the values and (implicitly) the policy
  - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
  - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
  - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
  - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

# Summary: MDP Algorithms

#### So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

#### These all look the same!

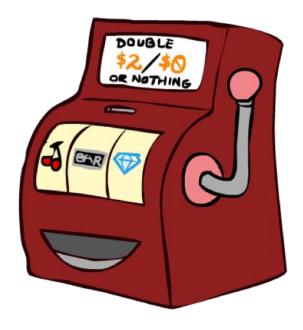
- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

### **Double Bandits**



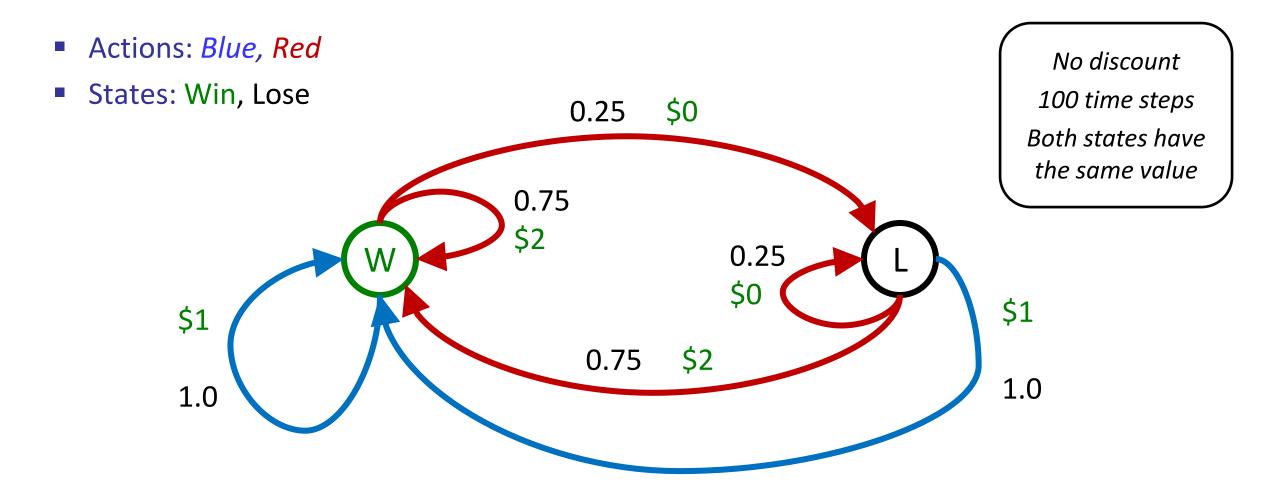
Blue slot machine gives you \$1 when you pull the lever





Red slot machine gives you \$0 or \$2 when you pull the lever

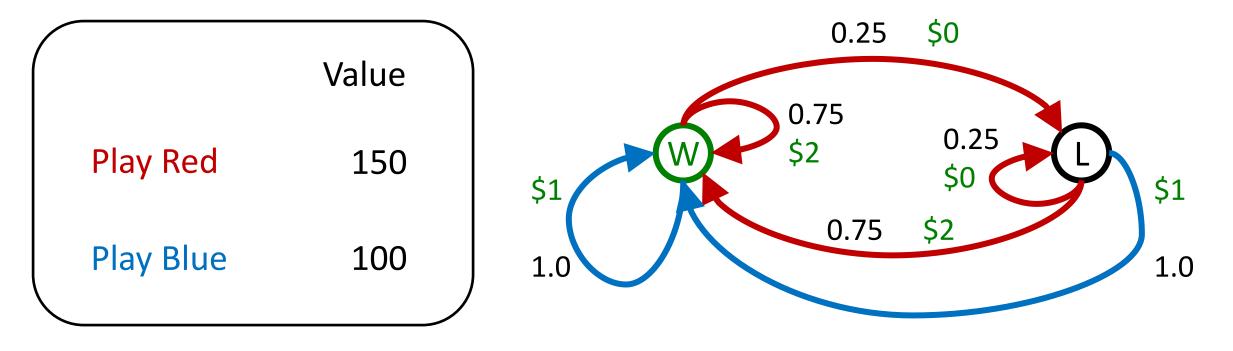
## Double-Bandit MDP



# **Offline Planning**

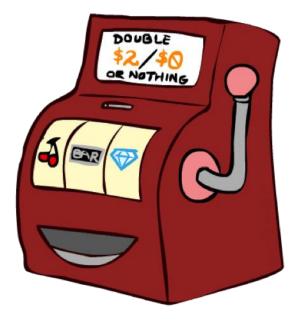
- Solving MDPs is offline planning
  - You determine all quantities through computation
  - You need to know the details of the MDP
  - You do not actually play the game!

No discount 100 time steps Both states have the same value



# Let's Play!

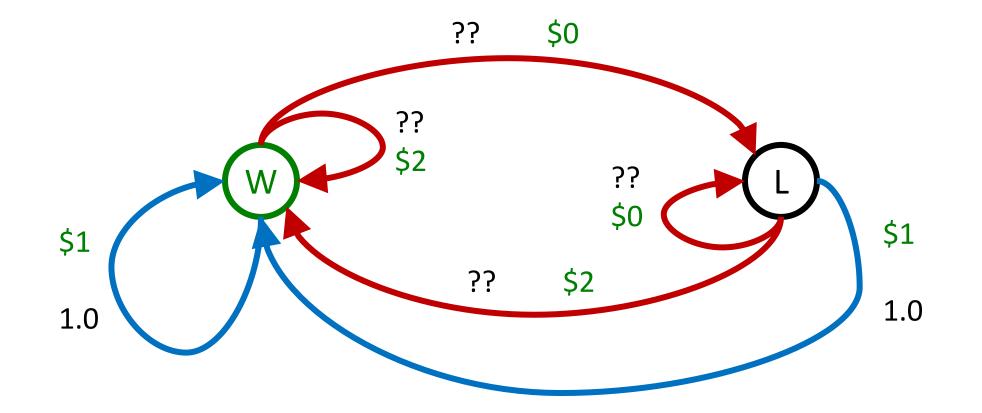




\$2\$2\$0\$2\$2\$0\$0\$0

## **Online Planning**

Rules changed! Red's win chance is different.



# Let's Play!





\$0\$0\$0\$2\$0\$2\$0\$0\$0\$0

# What Just Happened?

- That wasn't planning, it was learning!
  - Specifically, reinforcement learning
  - There was an MDP, but you couldn't solve it with just computation
  - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
  - Exploration: you have to try unknown actions to get information
  - Exploitation: eventually, you have to use what you know
  - Regret: even if you learn intelligently, you make mistakes
  - Sampling: because of chance, you have to try things repeatedly
  - Difficulty: learning can be much harder than solving a known MDP



### Next Time: Reinforcement Learning!