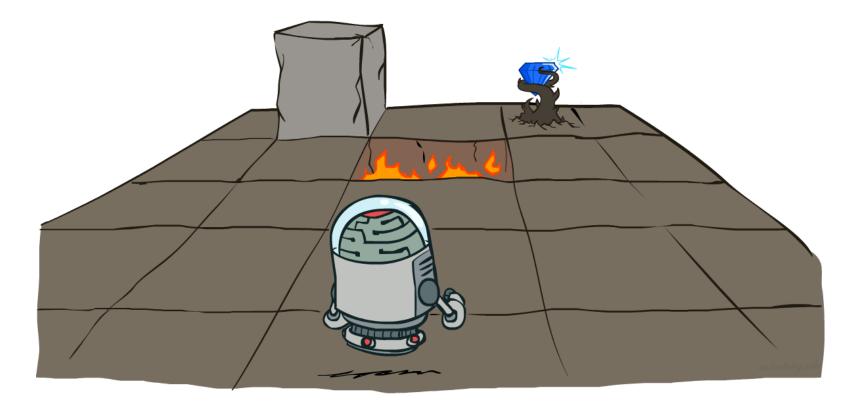
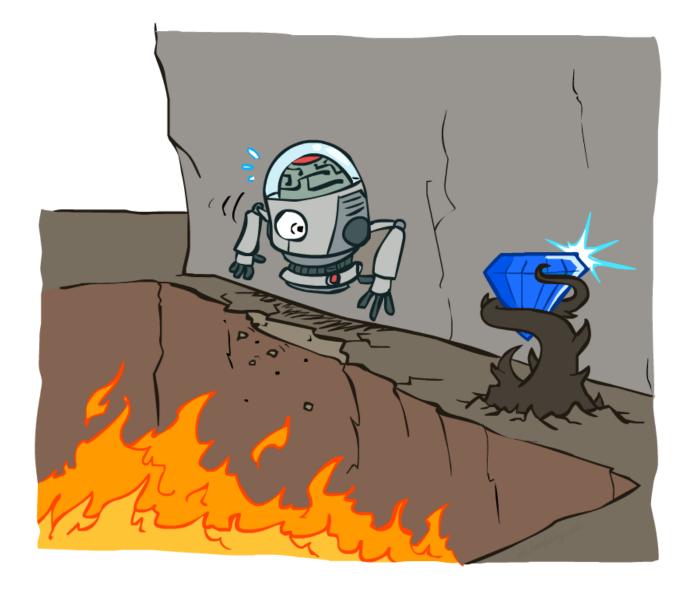
COE 4213564 Introduction to Artificial Intelligence Markov Decision Processes



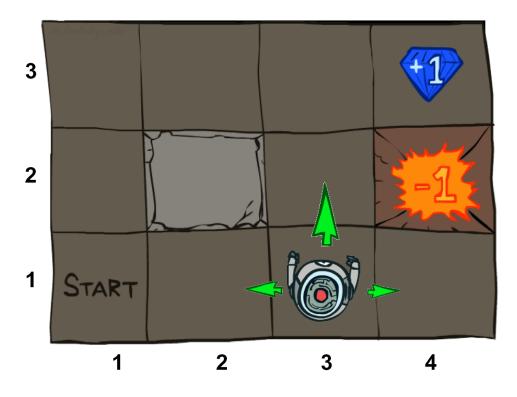
Many slides are adapted from CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.

Non-Deterministic Search



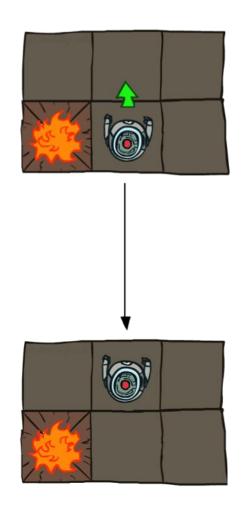
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

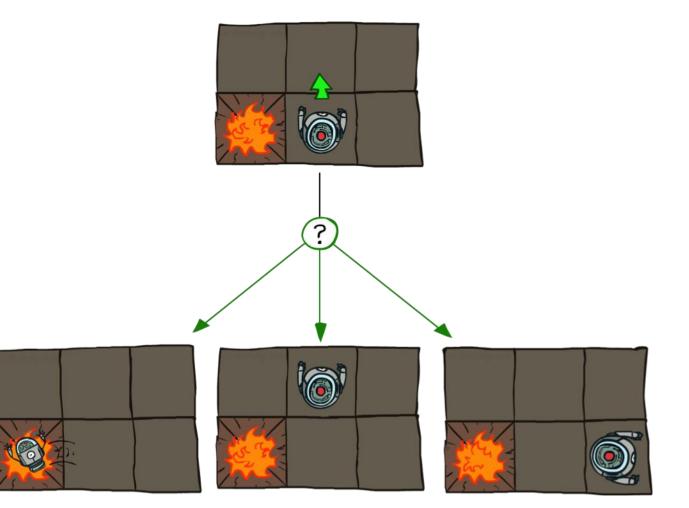


Grid World Actions

Deterministic Grid World



Stochastic Grid World

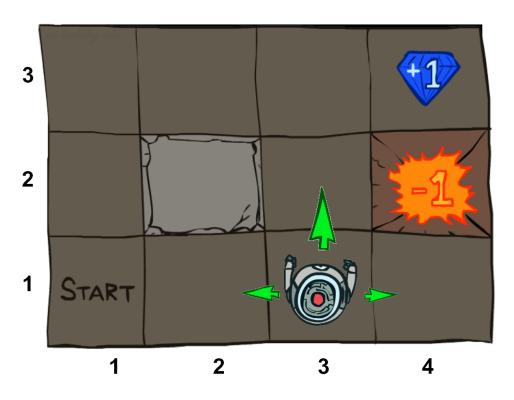


Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

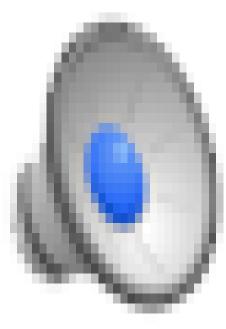
MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have a new tool soon



[Demo – gridworld manual intro (L8D1)]

Video of Demo Gridworld Manual Intro



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

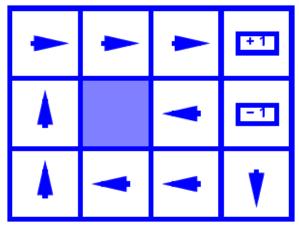
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

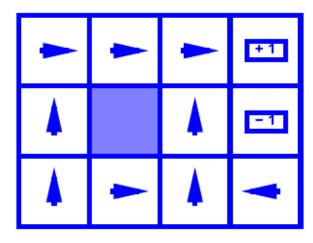


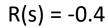
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

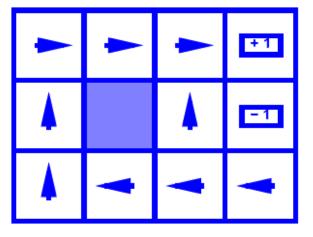
Optimal Policies



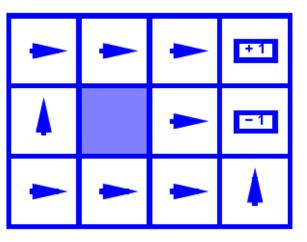
R(s) = -0.01



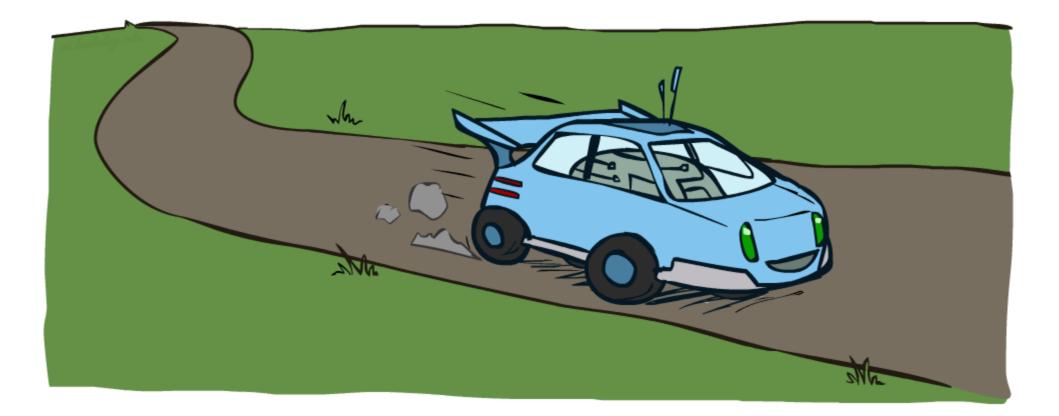




R(s) = -0.03

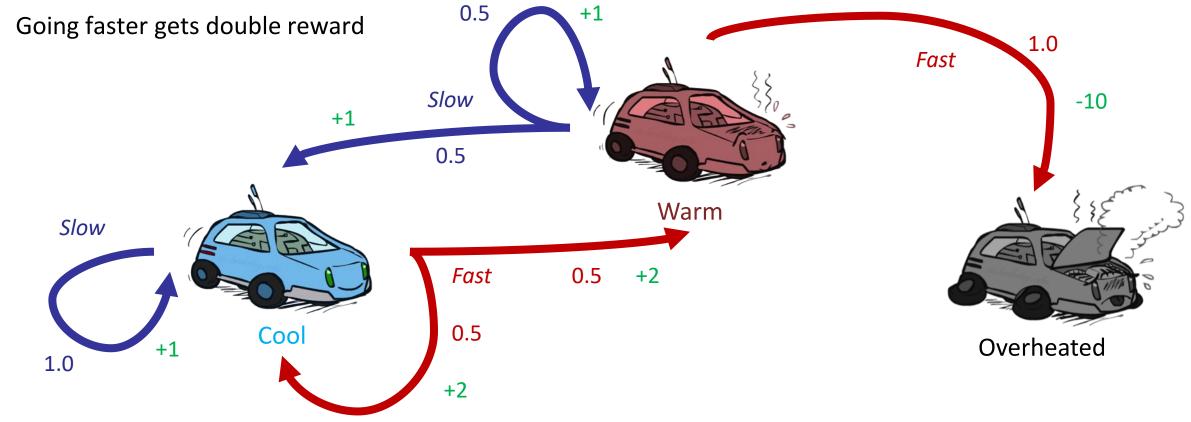


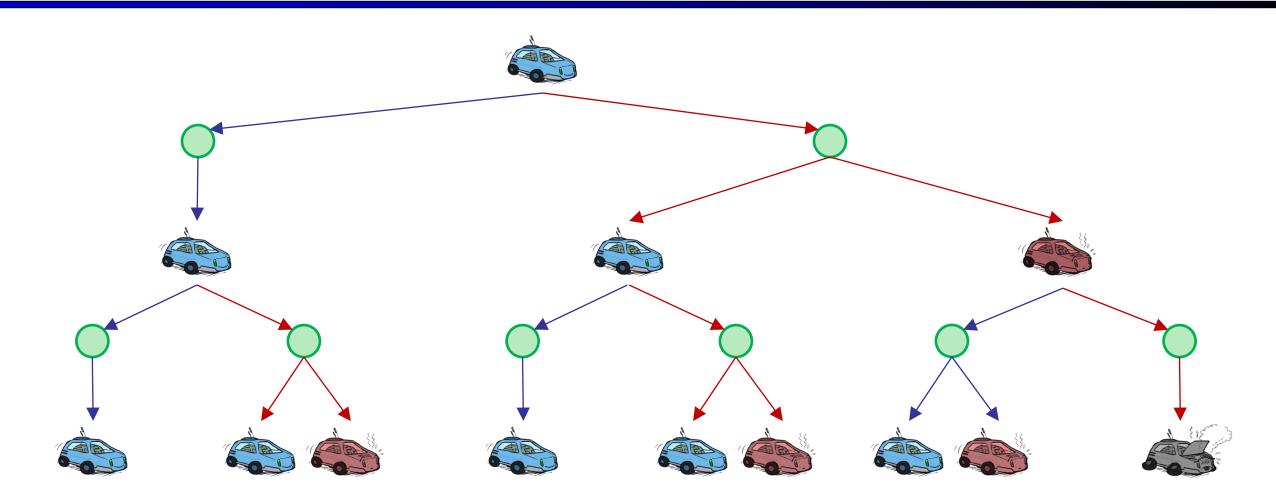
Example: Racing



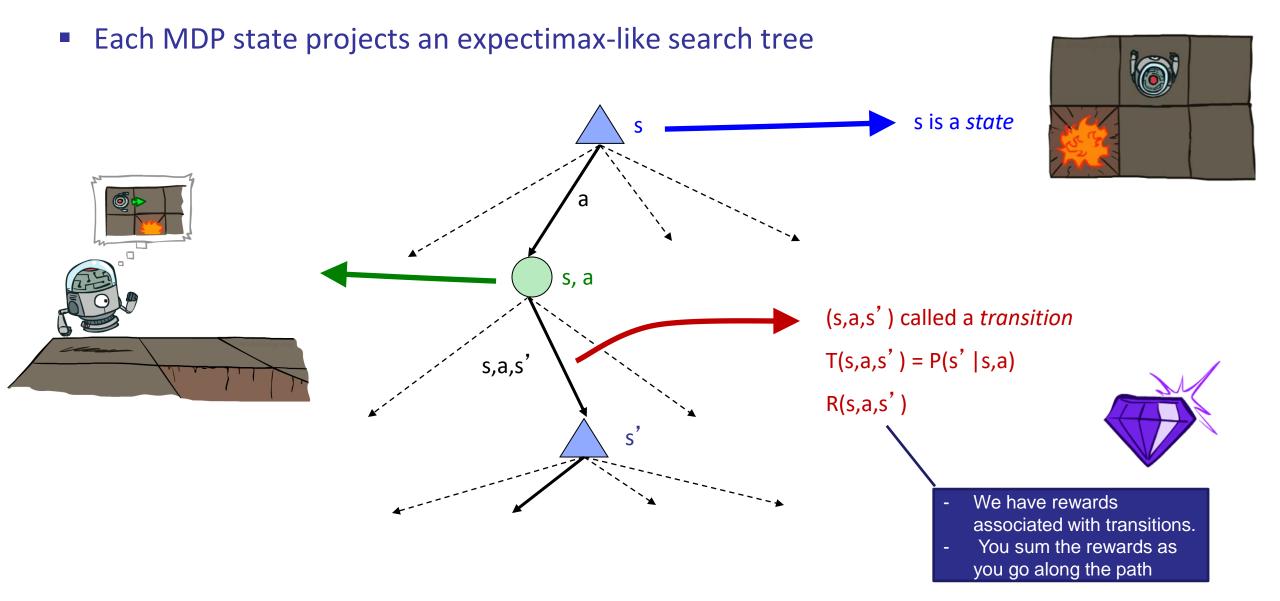
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

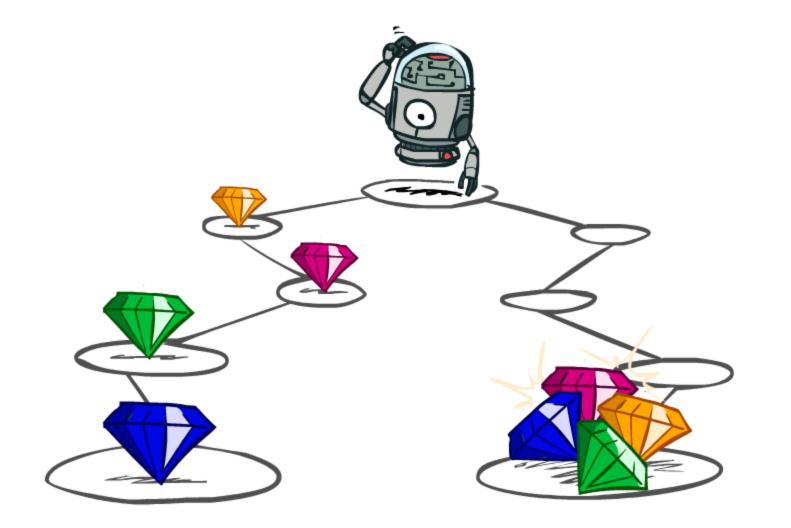




MDP Search Trees



Utilities of Sequences



Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]

Sooner is better

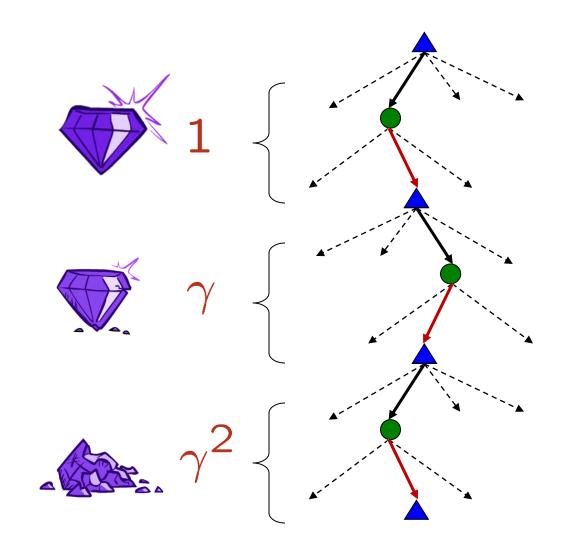


Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - Reward 1 at 1st step, 2 at the 2nd, 3 at the 3rd steps
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])</p>



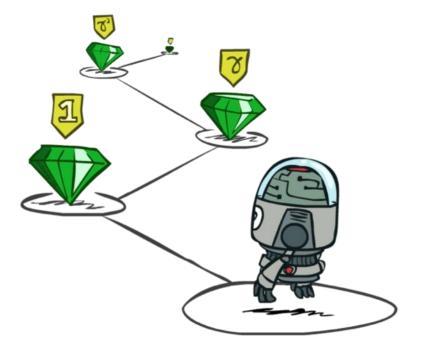
Stationary Preferences

Theorem: if we assume stationary preferences over a sequence of rewards:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

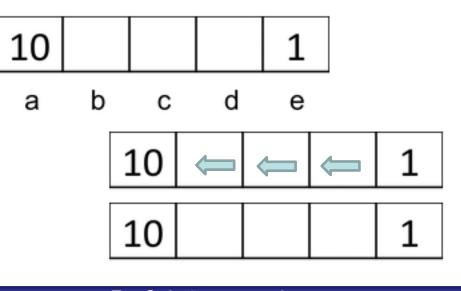
- Where r is the additional reward
- Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$



Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For γ = 1, what is the optimal policy?
- Quiz 2: For γ = 0.1, what is the optimal policy?



For Quiz 2 on state d:

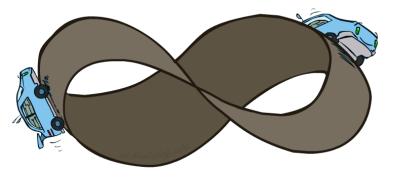
- Sum rewards
- Go to east : $0 + \gamma * 1 = 0.1$
- Go to west : $0 + \gamma * 0 + \gamma^2 * 0 + \gamma^3 * 10 = 0.01$
- So it is better to go to east in you are in state d
- In other states b and c, go to west
- Quiz 3: For which γ are West and East equally good when in state d?
 γ = 1 / sqrt(10)

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use 0 < γ < 1

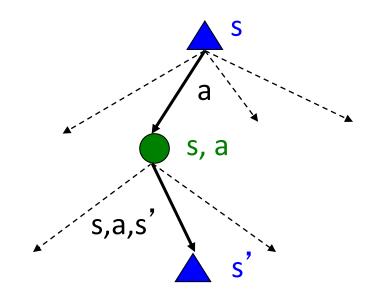
$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

- Sum of rewards are bounded (R_{max} : Maximum reward)
- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

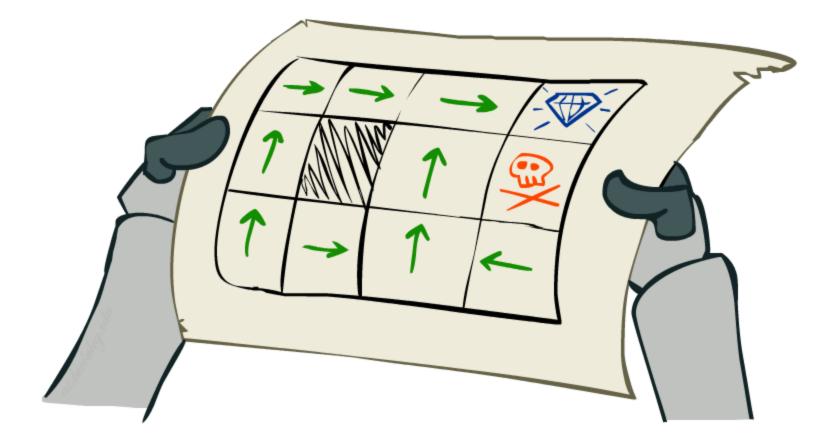


Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

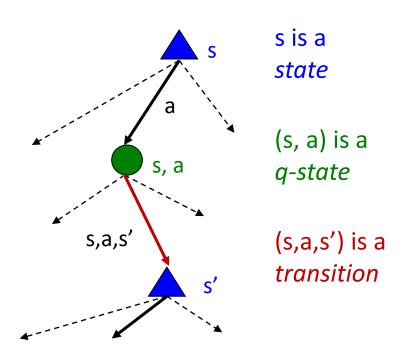


Solving MDPs



Optimal Quantities

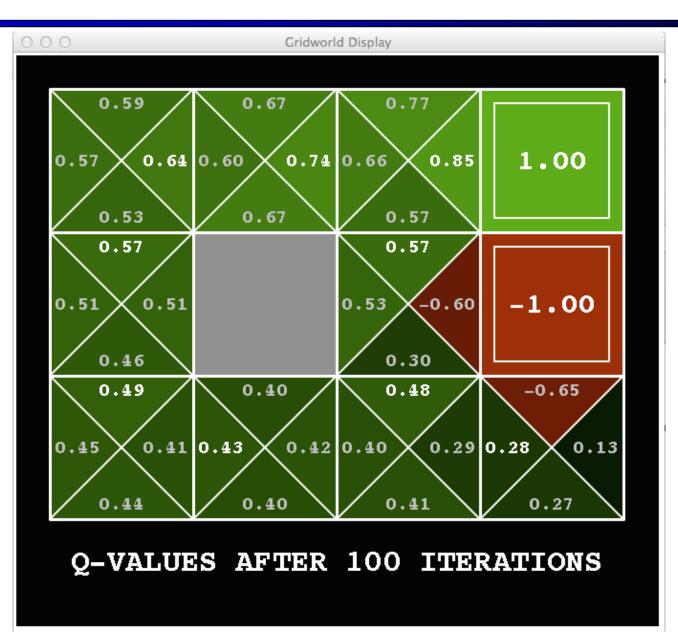
- The value (utility) of a state s:
 - V^{*}(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:
 π^{*}(s) = optimal action from state s



Snapshot of Demo – Gridworld V Values

000	Gridworld Display				
	0.64 →	0.74 ▸	0.85)	1.00	
	^		•		
	0.57		0.57	-1.00	
	^		•		
	0.49	∢ 0.43	0.48	∢ 0.28	
	VALUES AFTER 100 ITERATIONS				

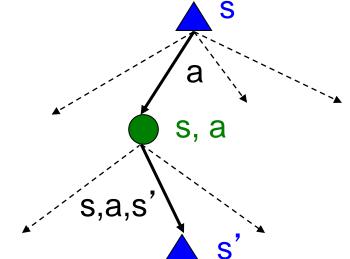
Snapshot of Demo – Gridworld Q Values

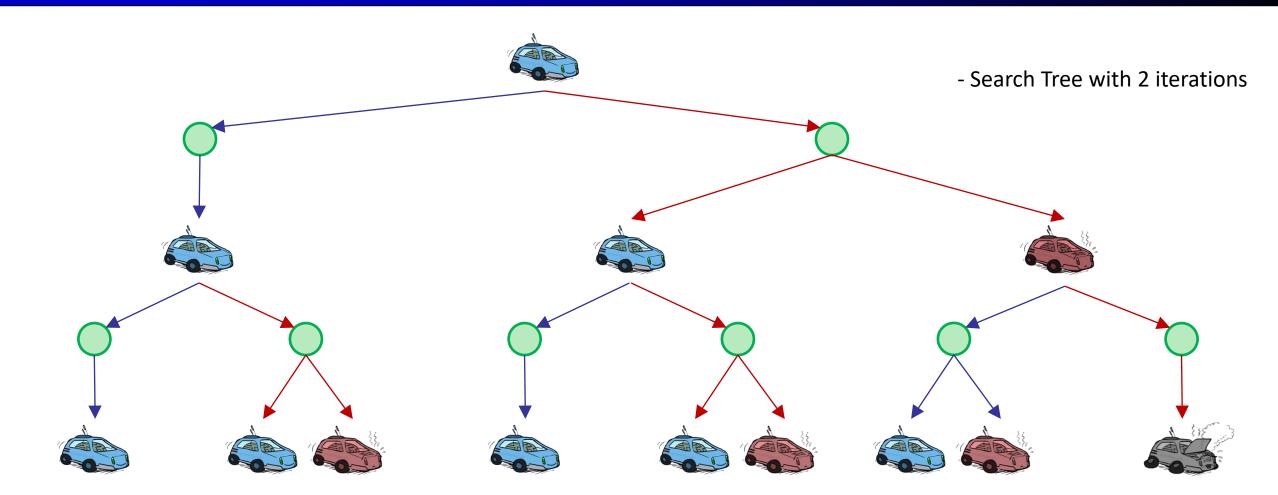


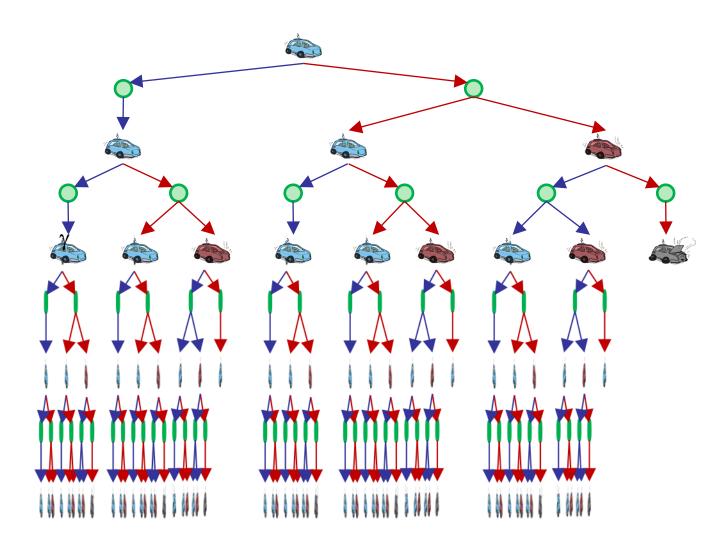
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

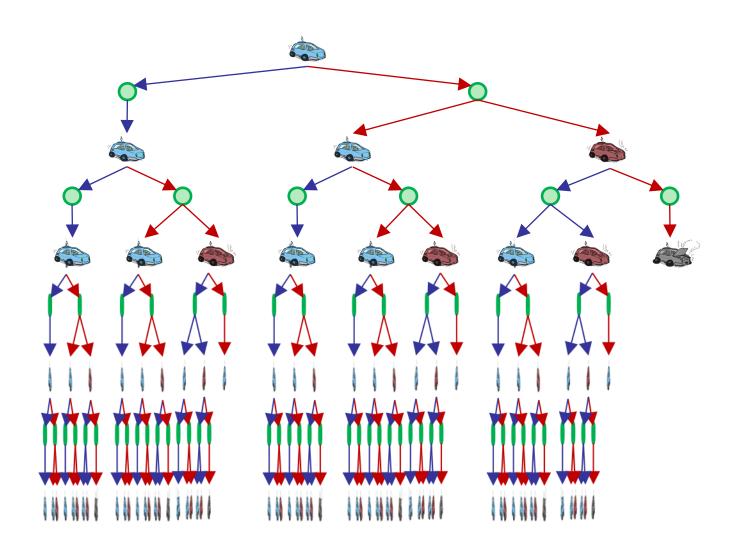






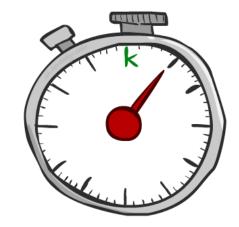
- We play the game long time, not stop after 2 iterations
- Some branches are the same (repetitions)
- Use caching or bottomup dynamic programming

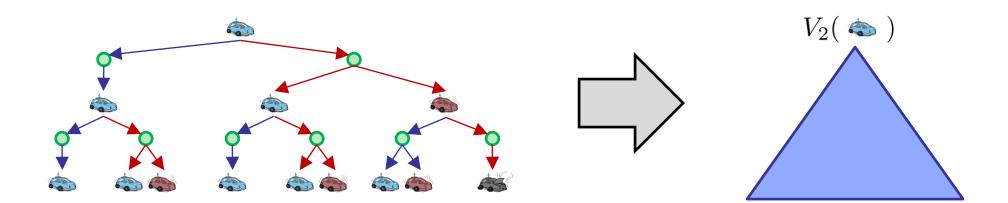
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



Time-Limited Values

- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s





0 0	Gridworl	d Display	
		^	
0.00	0.00	0.00	0.00
		^	
0.00		0.00	0.00
		^	
0.00	0.00	0.00	0.00
VALUES AFTER O ITERATIONS			

0 0	0	Gridworl	d Display		
ſ					
	0.00	0.00	0.00 >	1.00	
	^				
	0.00		∢ 0.00	-1.00	
	^	^	^		
	0.00	0.00	0.00	0.00	
				-	
	VALUES AFTER 1 ITERATIONS				

O O Gridworld Display			
•	0.00 >	0.72)	1.00
• 0.00		• 0.00	-1.00
•	• 0.00	• 0.00	0.00
VALUES AFTER 2 ITERATIONS			

k=3

0	O O Gridworld Display				
ŗ	0.00)	0.52)	0.78)	1.00	
	• 0.00		• 0.43	-1.00	
	• 0.00	• 0.00	• 0.00	0.00	
	VALUES AFTER 3 ITERATIONS				

k=4

Gridworld Display				
	0.37 ▶	0.66)	0.83 →	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUES AFTER 4 ITERATIONS			

00	○ ○ ○ Gridworld Display			
	0.51 →	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

00	C Cridworld Display			
	0.59 →	0.73 →	0.85)	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
VALUES AFTER 6 ITERATIONS				

0 0	0	Gridworl	d Display	-
	0.62)	0.74 ▸	0.85)	1.00
	^		^	
	0.50		0.57	-1.00
	^		^	
	0.34	0.36)	0.45	◀ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

00	0	Gridworl	d Display	
	0.63)	0.74 →	0.85)	1.00
	•		•	
	0.53		0.57	-1.00
	• 0.42	0.39 →	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

00	0	Gridworl	d Display	
	0.64)	0.74 ▸	0.85)	1.00
	▲ 0.55		▲ 0.57	-1.00
	▲ 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

00	C C C Gridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	• 0.56		• 0.57	-1.00	
	▲ 0.48	∢ 0.41	• 0.47	∢ 0.27	
	VALUES AFTER 10 ITERATIONS				

Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
• 0.56		• 0.57	-1.00	
• 0.48	∢ 0.42	• 0.47	∢ 0.27	
VALUE	S AFTER	11 ITERA	TIONS	

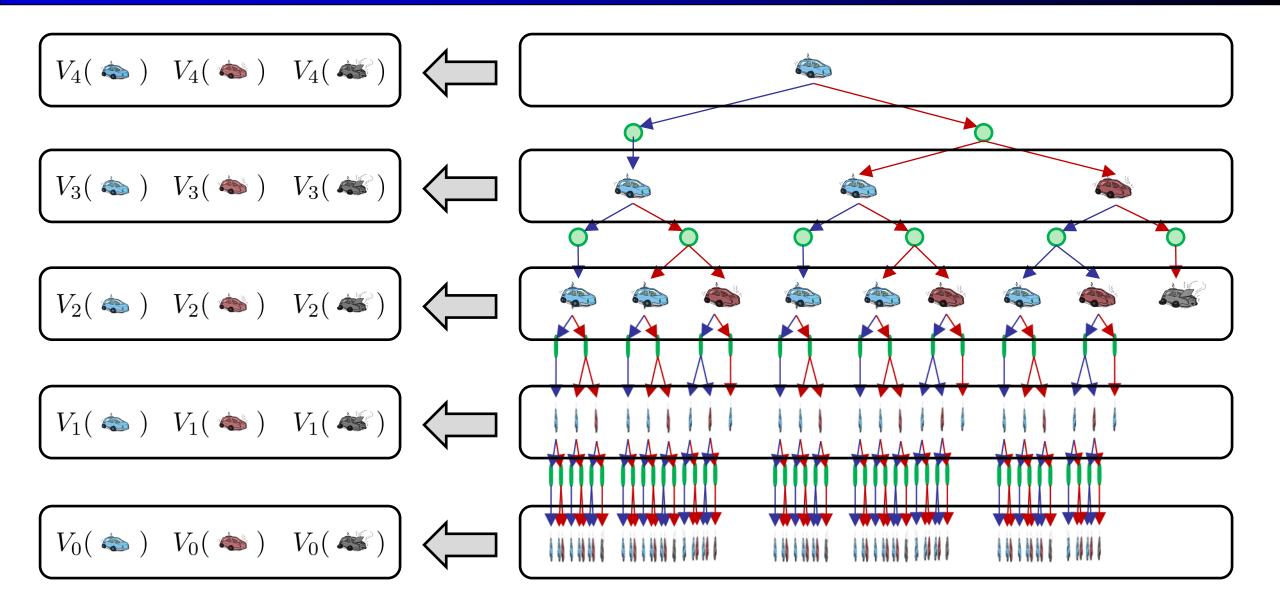
00	○ ○ ○ Gridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	• 0.57		• 0.57	-1.00	
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

0 0	Gridworld Display			
0.64	0.74 →	0.85 →	1.00	
• 0.57		• 0.57	-1.00	
▲ 0.49	∢ 0.43	▲ 0.48	∢ 0.28	

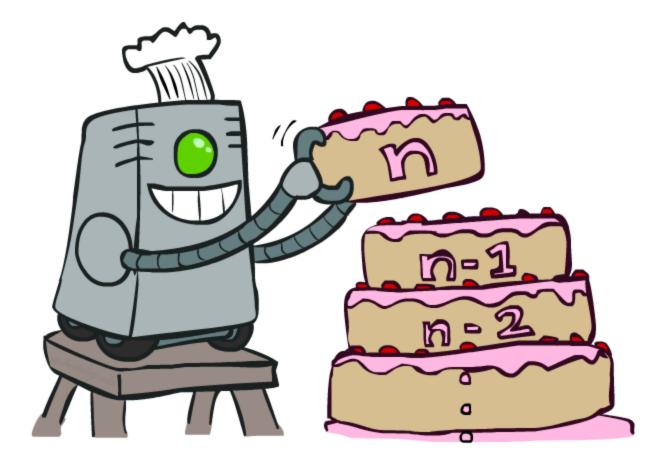
VALUES AFTER 100 ITERATIONS

- Values converge
 and
- don't change much after certain number of iterations

Computing Time-Limited Values (Compute v₀, v₁, v₂, ...)



Value Iteration

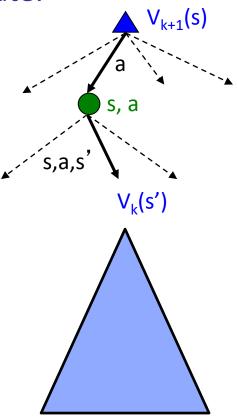


Value Iteration

- Start with V₀(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V_k(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

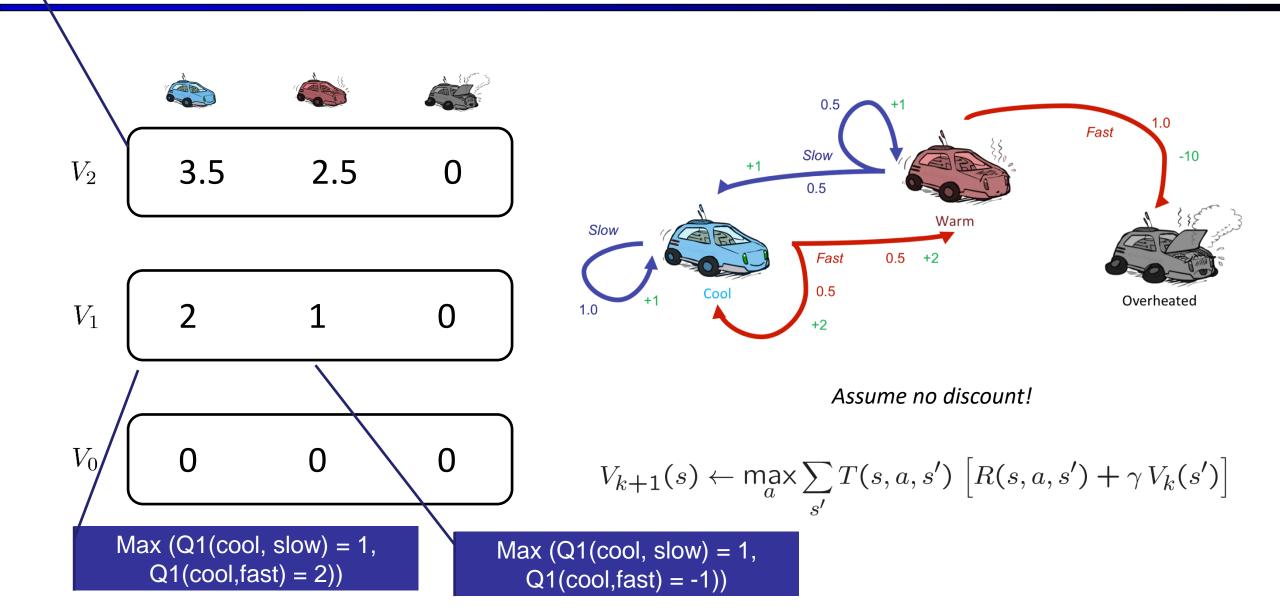
- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do



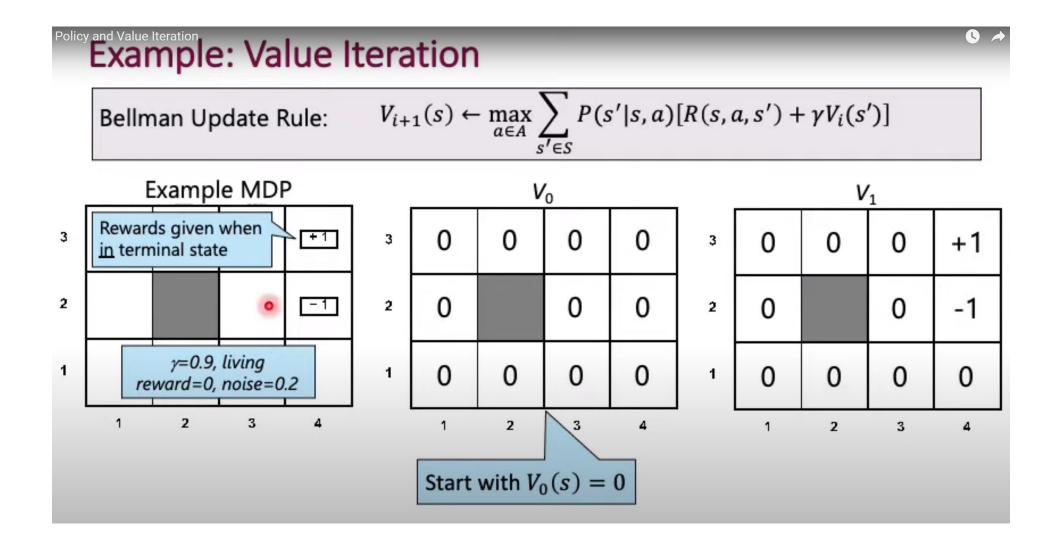
Example: Value Iteration

Max (Q2(cool, slow) = 1+2,

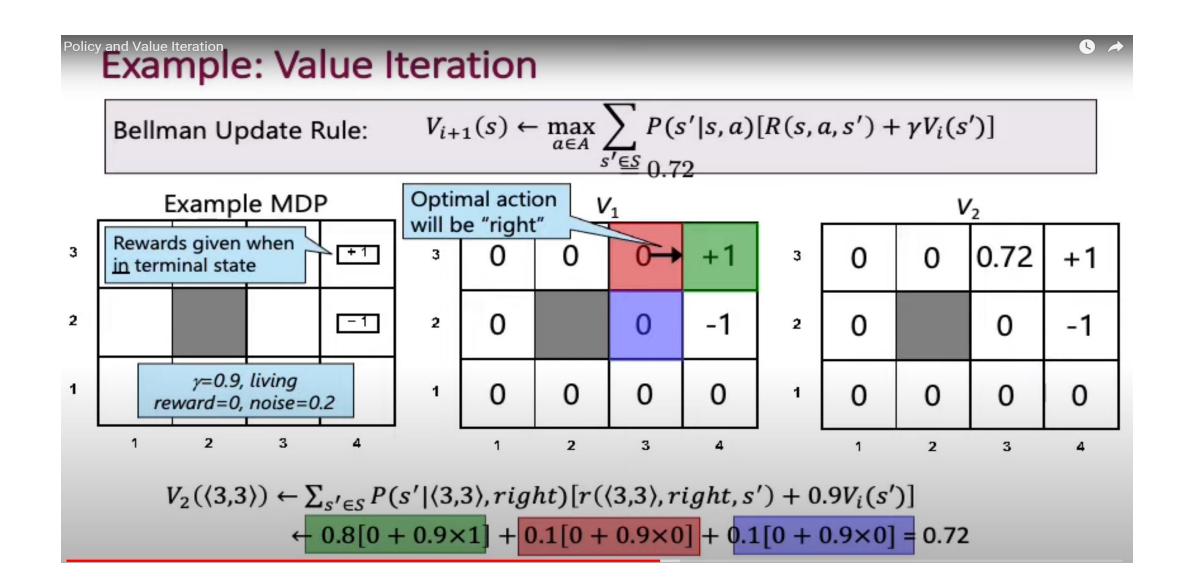
Q2(cool, fast) = ((2+2)+(2+1))/2=3.5)



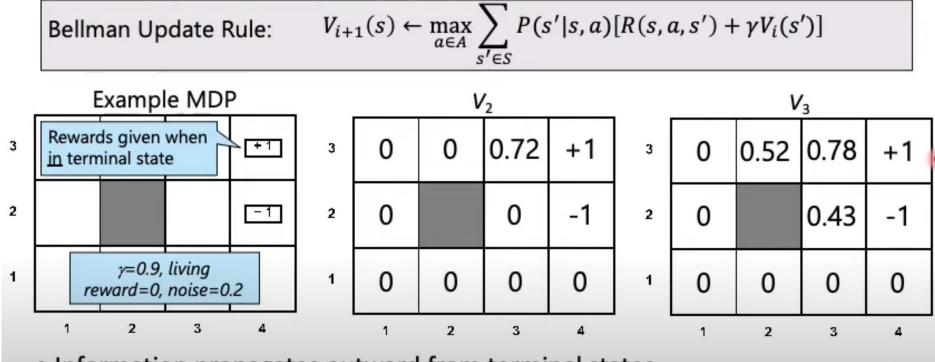
Example: Value Iteration



Example: Value Iteration



Policy and Value Iteration Example: Value Iteration



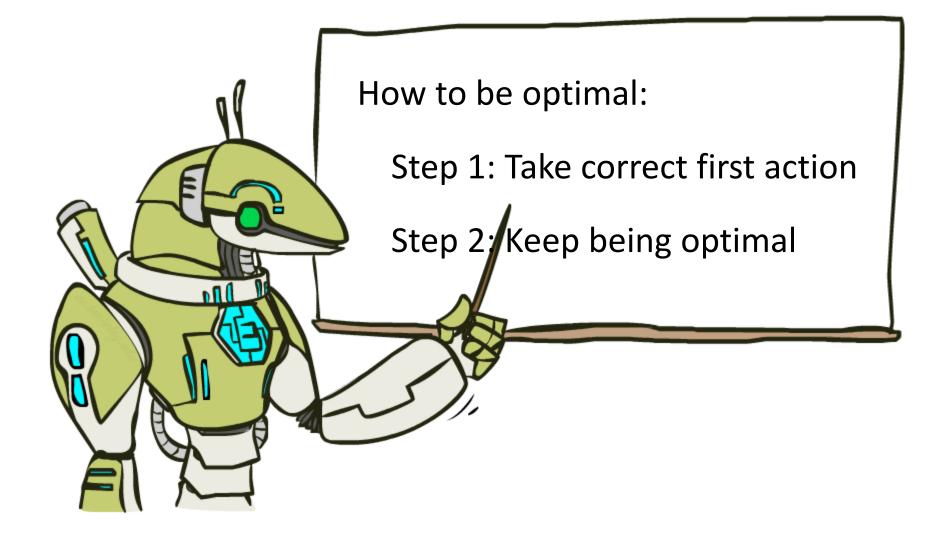
L

Information propagates outward from terminal states

GridWorld: Dynamic Programming Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

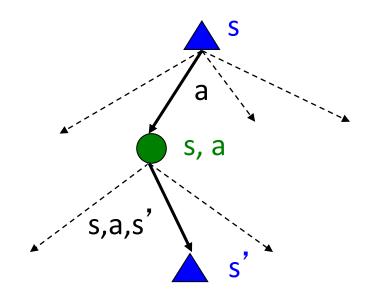
The Bellman Equations



The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Value Iteration

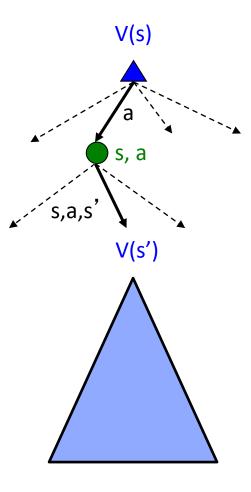
Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Value iteration computes them:

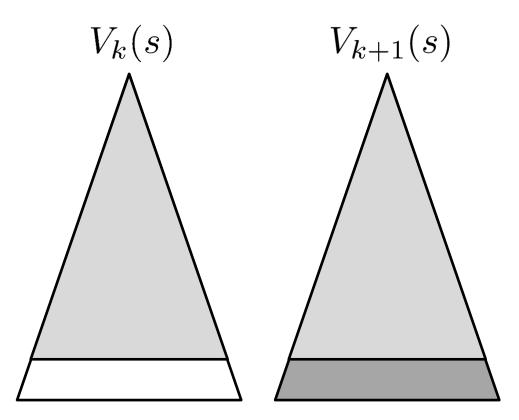
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values



Convergence*

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most ($\gamma^k * \max[R]$) different
 - So as k increases, the values converge



Value iteration algorithm

```
function VALUE-ITERATION(mdp, \epsilon) returns a utility function

inputs: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a),

rewards R(s,a,s'), discount \gamma

\epsilon, the maximum error allowed in the utility of any state

local variables: U, U', vectors of utilities for states in S, initially zero

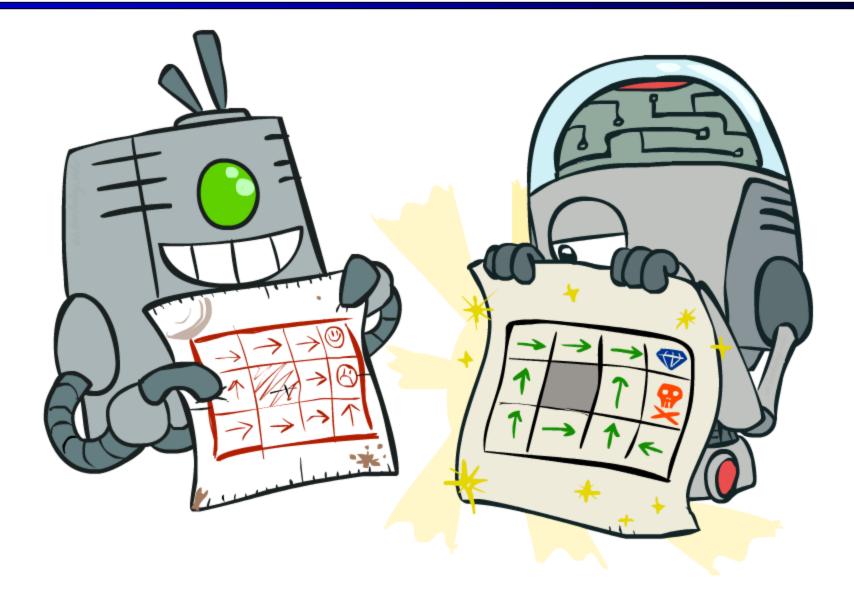
\delta, the maximum relative change in the utility of any state
```

```
repeat
```

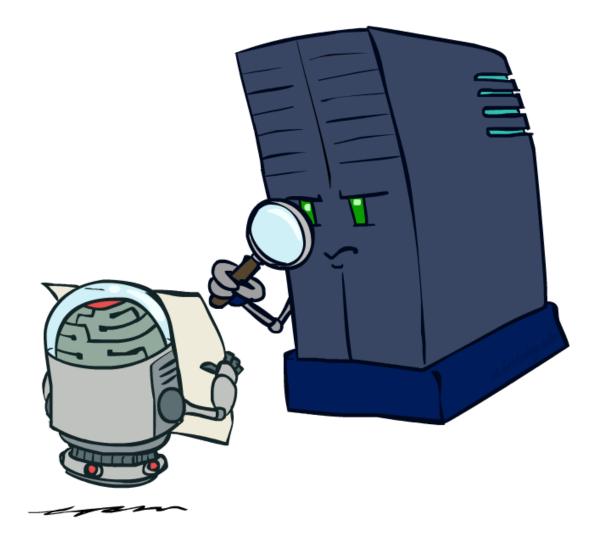
```
\begin{array}{l} U \leftarrow U'; \, \delta \leftarrow 0 \\ \text{for each state $s$ in $S$ do} \\ U'[s] \leftarrow \max_{a \in A(s)} \text{ Q-VALUE}(mdp, s, a, U) \\ \text{if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta \leq \epsilon (1 - \gamma) / \gamma \\ \text{return $U$} \end{array}
```

Figure 16.6 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (16.12).

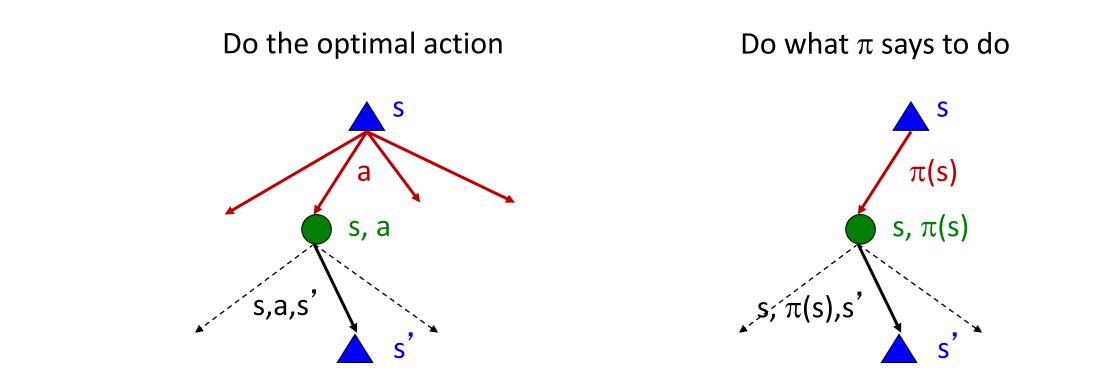
Policy Methods



Policy Evaluation



Fixed Policies

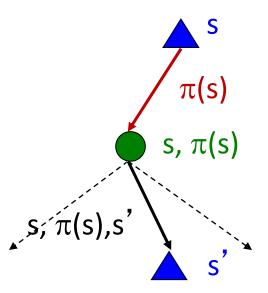


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 V^π(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

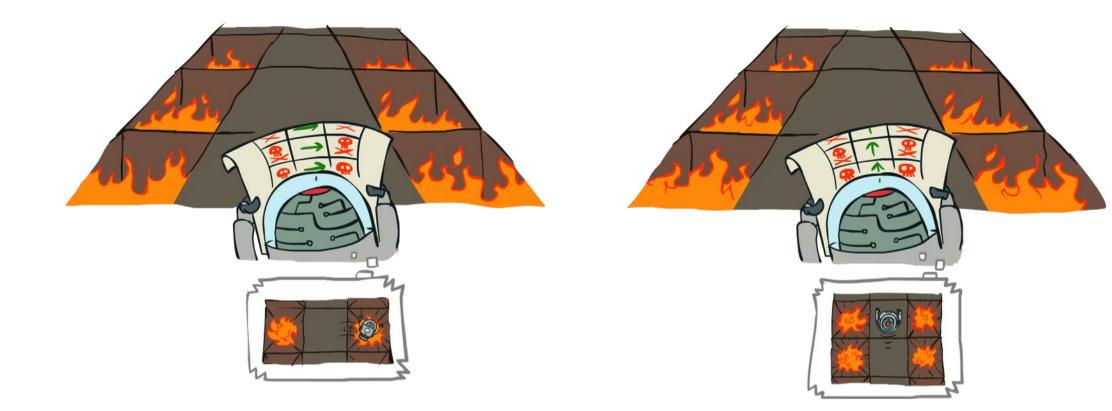
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$



Example: Policy Evaluation

Always Go Right

Always Go Forward



Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

Bad Policy

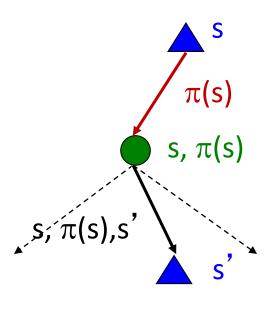
Good Policy

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

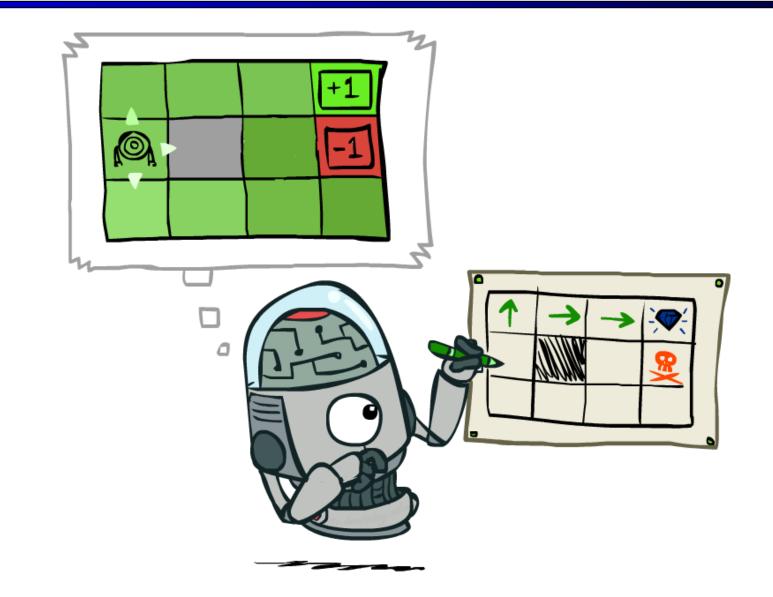
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')$$



- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)

0.95 ♪	0.96 ኑ	0.98 ▶	1.00
▲ 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

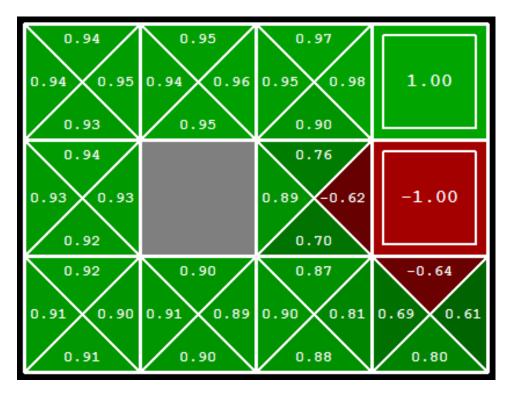
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

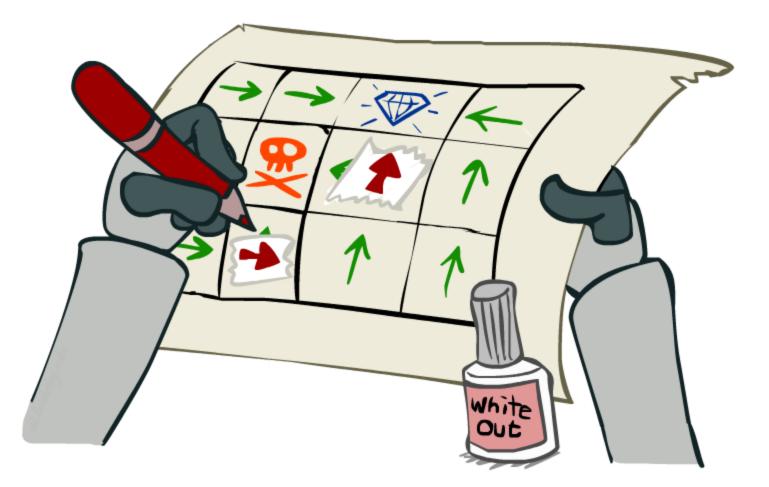
- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

Policy Iteration

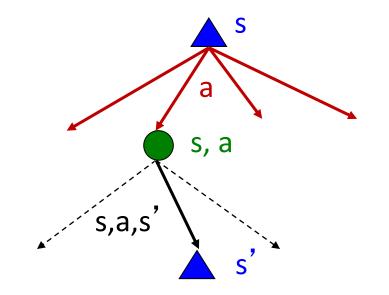


Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S²A) per iteration



- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]

0 0	Gridworl	d Display		
		^		
0.00	0.00	0.00	0.00	
^		^		
0.00		0.00	0.00	
^		^		
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

0 0	0	Gridworl	d Display		
ſ	•	•			
	0.00	0.00	0.00 →	1.00	
	^				
	0.00		∢ 0.00	-1.00	
	^	^	^		
	0.00	0.00	0.00	0.00	
				•	
	VALUES AFTER 1 ITERATIONS				

0 0	Gridworl	d Display	
•	0.00 >	0.72)	1.00
• 0.00		• 0.00	-1.00
•	• 0.00	• 0.00	0.00
VALUES AFTER 2 ITERATIONS			

k=3

0	0	Gridworl	d Display	
ŗ	0.00)	0.52)	0.78)	1.00
	• 0.00		• 0.43	-1.00
	• 0.00	• 0.00	• 0.00	0.00
	VALUE	S AFTER	3 ITERA	FIONS

k=4

00	0	Gridworl	d Display	
	0.37 ▶	0.66)	0.83 →	1.00
	• 0.00		• 0.51	-1.00
	• 0.00	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

00	0	Gridworl	d Display	
	0.51 →	0.72 →	0.84)	1.00
	• 0.27		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
VALUES AFTER 5 ITERATIONS				

00	C C Gridworld Display			
	0.59 →	0.73 →	0.85)	1.00
	• 0.41		• 0.57	-1.00
	• 0.21	0.31 →	• 0.43	∢ 0.19
VALUES AFTER 6 ITERATIONS				

0 0	0	Gridworl	d Display	-
	0.62)	0.74 ▸	0.85)	1.00
	^		^	
	0.50		0.57	-1.00
	^		^	
	0.34	0.36)	0.45	◀ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

00	0	Gridworl	d Display	
	0.63)	0.74 →	0.85)	1.00
	•		•	
	0.53		0.57	-1.00
	• 0.42	0.39 ▸	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

00	0	Gridworl	d Display	
	0.64)	0.74 ▸	0.85)	1.00
	▲ 0.55		▲ 0.57	-1.00
	▲ 0.46	0.40 →	• 0.47	∢ 0.27
VALUES AFTER 9 ITERATIONS				

00	C C Cridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	▲ 0.56		• 0.57	-1.00	
	▲ 0.48	∢ 0.41	• 0.47	◀ 0.27	
	VALUES AFTER 10 ITERATIONS				

Gridworld Display				
0.64)	0.74)	0.85)	1.00	
• 0.56		• 0.57	-1.00	
▲ 0.48	∢ 0.42	• 0.47	∢ 0.27	
VALUE	S AFTER	11 ITERA	TIONS	

00	○ ○ ○ Gridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	▲ 0.57		▲ 0.57	-1.00	
	▲ 0.49	∢ 0.42	• 0.47	∢ 0.28	
	VALUES AFTER 12 ITERATIONS				

00	Gridworl	d Display	
0.64)	0.74 →	0.85 →	1.00
• 0.57		• 0.57	-1.00
• 0.49	∢ 0.43	▲ 0.48	∢ 0.28
VALUES	S AFTER 1	LOO ITERA	ATIONS

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Policy iteration algorithm

```
function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s'|s,a)
local variables: U, a vector of utilities for states in S, initially zero
\pi, a policy vector indexed by state, initially random
```

```
repeat

U \leftarrow \text{POLICY-EVALUATION}(\pi, U, mdp)

unchanged? \leftarrow true

for each state s in S do

a^* \leftarrow \operatorname{argmax} Q\text{-VALUE}(mdp, s, a, U)

a \in A(s)

if Q\text{-VALUE}(mdp, s, a^*, U) > Q\text{-VALUE}(mdp, s, \pi[s], U) then

\pi[s] \leftarrow a^*; unchanged? \leftarrow false

until unchanged?

return \pi
```

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to....

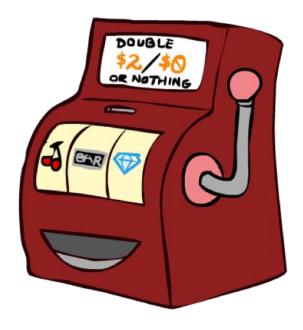
- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

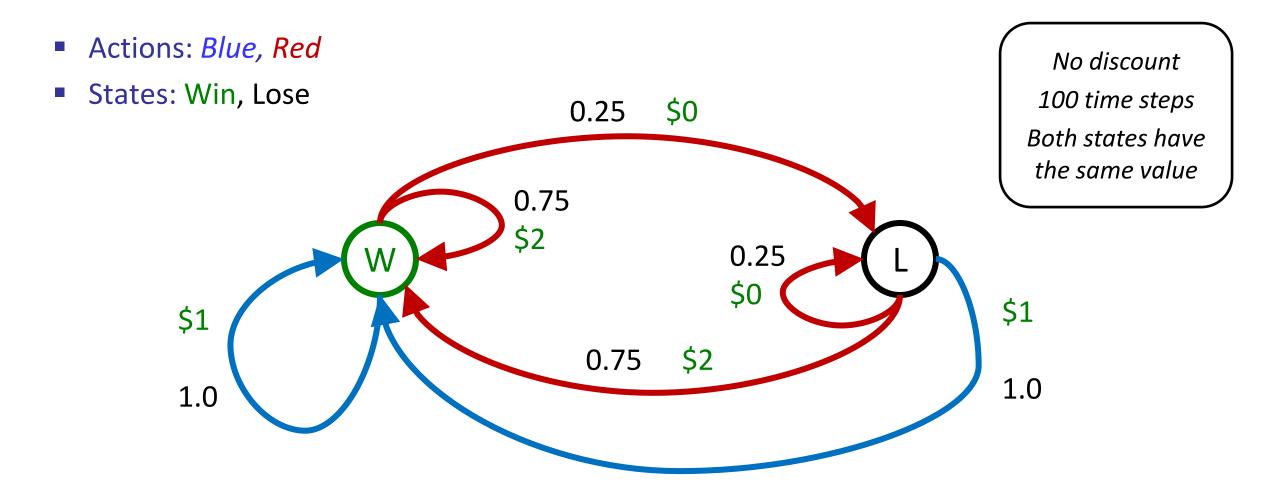
Double Bandits

Blue slot machine gives you \$1 when you pull the lever



Red slot machine gives you \$0 or \$2 when you pull the lever

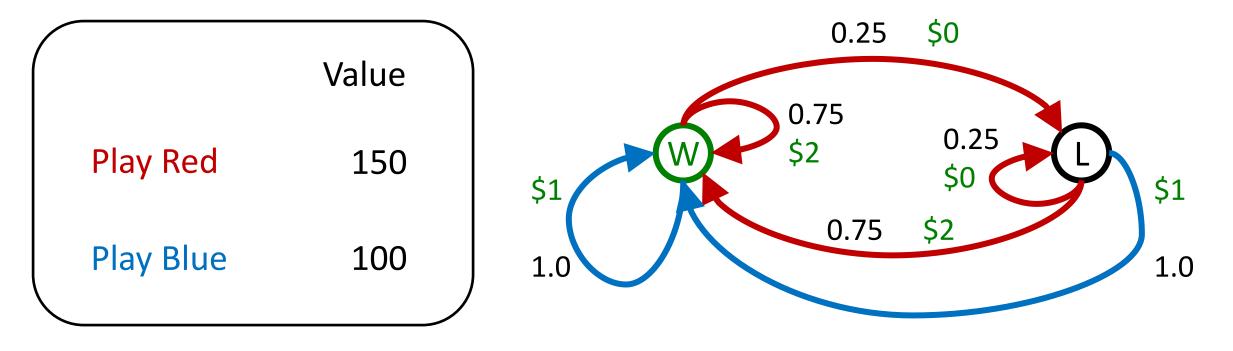
Double-Bandit MDP



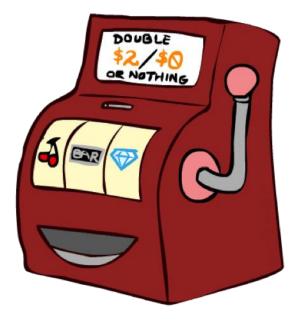
Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount 100 time steps Both states have the same value



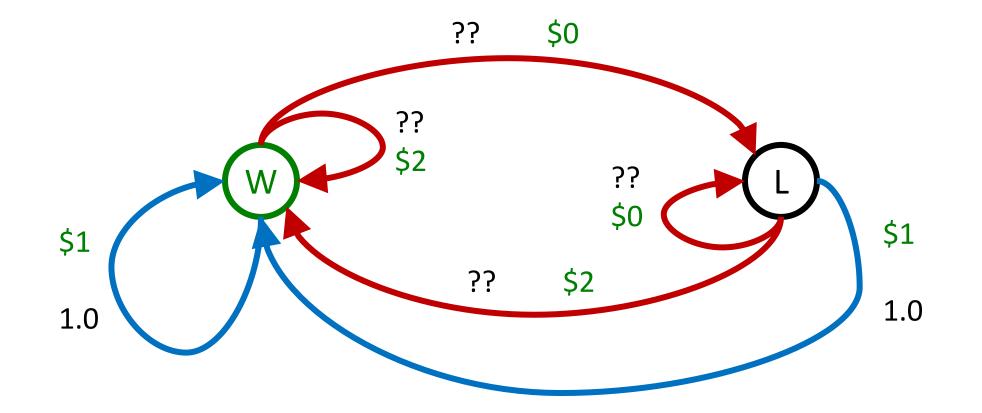
Let's Play!



\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

Rules changed! Red's win chance is different.



Let's Play!



\$0\$0\$0\$2\$0\$2\$0\$0\$0\$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!