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Markov Decision Processes

Many slides are adapted from  CS 188 (http://ai.berkeley.edu), CS 322, CIS 521, CS 221, CS182, CS4420.



Non-Deterministic Search



Example: Grid World

▪ A maze-like problem

▪ The agent lives in a grid

▪ Walls block the agent’s path

▪ Noisy movement: actions do not always go as planned

▪ 80% of the time, the action North takes the agent North 
(if there is no wall there)

▪ 10% of the time, North takes the agent West; 10% East

▪ If there is a wall in the direction the agent would have 
been taken, the agent stays put

▪ The agent receives rewards each time step

▪ Small “living” reward each step (can be negative)

▪ Big rewards come at the end (good or bad)

▪ Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World



Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]



Video of Demo Gridworld Manual Intro



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the 
future and the past are independent

▪ For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

▪ This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies

Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

▪ In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S → A
▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes        
expected utility if followed

▪ An explicit policy defines a reflex agent

▪ Expectimax didn’t compute entire policies
▪ It computed the action for a single state only



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing



Example: Racing

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward
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Racing Search Tree



MDP Search Trees

▪ Each MDP state projects an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

- We have rewards 

associated with transitions. 

- You sum the rewards as 

you go along the path



Utilities of Sequences



Utilities of Sequences

▪ What preferences should an agent have over reward sequences?

▪ More or less?

▪ Now or later?

▪ Sooner is better

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

▪ How to discount?
▪ Each time we descend a level, we 

multiply in the discount once

▪ Why discount?
▪ Sooner rewards probably do have 

higher utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5
▪ Reward 1 at 1st step, 2 at  the 2nd, 3 at 

the 3rd steps 

▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])



Stationary Preferences

▪ Theorem: if we assume stationary preferences over a
sequence of rewards:

▪ Where r is the additional reward
▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:



Quiz: Discounting

▪ Given:

▪ Actions: East, West, and Exit (only available in exit states a, e)
▪ Transitions: deterministic

▪ Quiz 1: For  = 1, what is the optimal policy?

▪ Quiz 2: For  = 0.1, what is the optimal policy?

▪ Quiz 3: For which  are West and East equally good when in state d? 
 = 1 / sqrt(10)

For Quiz 2 on state d:

- Sum rewards

- Go to east : 0 +  * 1 = 0.1

- Go to west : 0 +  * 0 + 2 *  0 + 3 * 10 = 0.01

- So it is better to go to east in you are in state d

- In other states b and c, go to west



Infinite Utilities?!

▪ Problem: What if the game lasts forever?  Do we get infinite rewards?

▪ Solutions:
▪ Finite horizon: (similar to depth-limited search)

▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Sum of rewards are bounded (Rmax : Maximum reward)

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Recap: Defining MDPs

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0

▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )

▪ MDP quantities so far:
▪ Policy = Choice of action for each state
▪ Utility = sum of (discounted) rewards

a

s

s, a

s,a,s’

s’



Solving MDPs



Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Snapshot of Demo – Gridworld V Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’



Racing Search Tree

- Search Tree with 2 iterations



Racing Search Tree



• We play the game long 
time, not stop after 2 
iterations 

• Some branches are the 
same (repetitions)

• Use caching or bottom-
up dynamic 
programming



Racing Search Tree

▪ We’re doing way too much 
work with expectimax!

▪ Problem: States are repeated 
▪ Idea: Only compute needed 

quantities once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

▪ Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values

▪ Key idea: time-limited values

▪ Define Vk(s) to be the optimal value of s if the game ends 
in k more time steps
▪ Equivalently, it’s what a depth-k expectimax would give from s

[Demo – time-limited values (L8D6)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

• Values converge 
and

• don’t change 
much after 
certain number 
of iterations



Computing Time-Limited Values (Compute v0, v1, v2 , …)



Value Iteration



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example: Value Iteration

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

Max (Q1(cool, slow) = 1, 

Q1(cool,fast) = 2))
Max (Q1(cool, slow) = 1, 

Q1(cool,fast) = -1))

Max (Q2(cool, slow) = 1+2, 

Q2(cool,fast) = ((2+2)+(2+1))/2=3.5)



Example: Value Iteration



Example: Value Iteration





GridWorld: Dynamic Programming Demo

▪ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_
dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


The Bellman Equations

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



The Bellman Equations

▪ Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values

▪ These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over

a

s

s, a

s,a,s’

s’



Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)



Convergence*

▪ How do we know the Vk vectors are going to converge?

▪ Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

▪ Case 2: If the discount is less than 1

▪ Sketch: For any state Vk and Vk+1 can be viewed as depth 
k+1 expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, Vk+1 has actual 
rewards while Vk has zeros

▪ That last layer is at best all RMAX

▪ It is at worst RMIN

▪ But everything is discounted by γk that far out

▪ So Vk and Vk+1 are at most (γk * max|R|) different

▪ So as k increases, the values converge



Value iteration algorithm



Policy Methods



Policy Evaluation



Fixed Policies

▪ Expectimax trees max over all actions to compute the optimal values

▪ If we fixed some policy (s), then the tree would be simpler – only one action per state
▪ … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Do the optimal action Do what  says to do



Utilities for a Fixed Policy

▪ Another basic operation: compute the utility of a state s 
under a fixed (generally non-optimal) policy

▪ Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

▪ Recursive relation (one-step look-ahead / Bellman equation):

(s)

s

s, (s)

s, (s),s’

s’



Example: Policy Evaluation

Always Go Right Always Go Forward



Example: Policy Evaluation

Always Go Right Always Go Forward

Bad Policy Good Policy



Policy Evaluation

▪ How do we calculate the V’s for a fixed policy ?

▪ Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Without the maxes, the Bellman equations are just a linear system
▪ Solve with Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’



Policy Extraction



Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?

▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?

▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!



Policy Iteration



Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Problem 1: It’s slow – O(S2A) per iteration

▪ Problem 2: The “max” at each state rarely changes

▪ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

[Demo: value iteration (L9D2)]



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions



Policy Iteration

▪ Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:



Policy iteration algorithm



Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:

▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:

▪ We do several passes that update utilities with fixed policy (each pass is fast because we 
consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

▪ So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead expectimax fragments

▪ They differ only in whether we plug in a fixed policy or max over actions



Double Bandits

Blue slot machine gives you $1
when you pull the lever 

Red slot machine gives you $0 or $2
when you pull the lever 



Double-Bandit MDP

▪ Actions: Blue, Red

▪ States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

No discount

100 time steps

Both states have 
the same value



Offline Planning

▪ Solving MDPs is offline planning

▪ You determine all quantities through computation

▪ You need to know the details of the MDP

▪ You do not actually play the game!

Play Red

Play Blue

Value

No discount

100 time steps

Both states have 
the same value

150

100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0



Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0



Online Planning

▪ Rules changed!  Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0



Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0



What Just Happened?

▪ That wasn’t planning, it was learning!

▪ Specifically, reinforcement learning

▪ There was an MDP, but you couldn’t solve it with just computation

▪ You needed to actually act to figure it out

▪ Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!


