
© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
1

Chapter 17 Sorting

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
2

Objectives

To study and analyze time efficiency of various sorting
algorithms (§§17.2–17.7).

To design, implement, and analyze bubble sort (§17.2).

To design, implement, and analyze merge sort (§17.3).

To design, implement, and analyze quick sort (§17.4).

To design and implement a heap (§17.5).

To design, implement, and analyze heap sort (§17.5).

To design, implement, and analyze bucket sort and radix
sort (§17.6).

To design, implement, and analyze external sort for large
data in a file (§17.7).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
3

why study sorting?

Sorting is a classic subject in computer science. There are three
reasons for studying sorting algorithms.

– First, sorting algorithms illustrate many creative
approaches to problem solving and these approaches can
be applied to solve other problems.

– Second, sorting algorithms are good for practicing
fundamental programming techniques using selection
statements, loops, methods, and arrays.

– Third, sorting algorithms are excellent examples to
demonstrate algorithm performance.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
4

what data to sort?

The data to be sorted might be integers, doubles,
characters, or objects. For simplicity, this chapter
assumes:

data to be sorted are integers,

data are stored in a list, and
data are sorted in ascending order

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
5

Bubble Sort

 2 5 9 4 8 1

 2 5 4 9 8 1

 2 5 4 8 9 1

 2 5 4 8 1 9

(a) 1st pass

2 4 5 8 1 9

 2 4 5 8 1 9

 2 4 5 1 8 9

(b) 2nd pass

2 4 5 1 8 9

 2 4 1 5 8 9

(c) 3rd pass

2 1 4 5 8 9

(d) 4th pass

 2 9 5 4 8 1

(e) 5th pass

 2 5 4 8 1 9

 2 4 5 1 8 9

 2 4 1 5 8 9

 1 2 4 5 8 9

22
12...)2()1(

2 nn
nn −=+++−+−

Bubble sort time: O(n2) BubbleSort

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
6

Bubble Sort Animation

http://www.cs.armstrong.edu/liang/anima

tion/BubbleSortAnimation.html

http://www.cs.armstrong.edu/liang/animation/BubbleSortAnimation.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
7

Merge Sort

 2 9 5 4 8 1 6 7

 2 9 5 4 8 1 6 7

split

 2 9

split

 5 4

 2

split

 9 5 4

 8 1 6 7

 8 1 6 7

 2 9

merge

 4 5 1 8 6 7

 2 4 5 9 1 6 7 8

 1 2 4 5 6 7 8 9

merge

merge

divide

conquer

MergeSort

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
8

Merge Sort

mergeSort(list):

firstHalf = mergeSort(firstHalf);

secondHalf = mergeSort(secondHalf);

list = merge(firstHalf, secondHalf);

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
9

Merge Two Sorted Lists

 2 4 5 9

 current1

 1

 1 6 7 8

 current2

 current3

 (a) After moving 1 to temp (b) After moving all the

elements in list2 to temp

 to temp

 2 4 5 9

 current1

 1 2 4 5 6 7 8 9

 1 6 7 8

 current2

 current3

 (c) After moving 9 to

temp

 2 4 5 9

 current1

 1 2 4 5 6 7 8

 1 6 7 8

 current2

 current3

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
10

Merge Sort Time

Let T(n) denote the time required for sorting an

array of n elements using merge sort. Without loss

of generality, assume n is a power of 2. The merge

sort algorithm splits the array into two subarrays,

sorts the subarrays using the same algorithm

recursively, and then merges the subarrays. So,

mergetime
n

T
n

TnT ++=)
2

()
2

()(

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
11

Merge Sort Time
The first T(n/2) is the time for sorting the first
half of the array and the second T(n/2) is the time
for sorting the second half. To merge two
subarrays, it takes at most n-1 comparisons to
compare the elements from the two subarrays and
n moves to move elements to the temporary array.
So, the total time is 2n-1. Therefore,

)log(1log212log2

1222...22)
2

(2

1222...22)
2

(2

1222)
2

(212)1
2

2)
4

(2(212)
2

(2)(

log

1log

log

log

1

2

2

nnOnnnnn

nnn
n

T

nnn
n

T

nn
n

Tn
nn

Tn
n

TnT

n

n

n

n

k

k

k

=+=+−+=

−+−++−+=

−+−++−+=

−+−+=−+−+=−+=

−

−

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
12

Quick Sort

Quick sort, developed by C. A. R. Hoare (1962),

works as follows: The algorithm selects an

element, called the pivot, in the array.

Divide the array into two parts such that all the

elements in the first part are less than or equal to

the pivot and all the elements in the second part

are greater than the pivot.

Recursively apply the quick sort algorithm to the

first part and then the second part.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
13

Quick Sort

 5 2 9 3 8 4 0 1 6 7

pivot

(a) The original array

 4 2 1 3 0 5 8 9 6 7

pivot

(b)The original array is partitioned

 0 2 1 3 4
(c) The partial array (4 2 1 3 0) is

partitioned

 0 2 1 3 (d) The partial array (0 2 1 3) is

partitioned

 1 2 3

pivot

pivot

pivot

(e) The partial array (2 1 3) is

partitioned

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
14

Partition

 5 2 9 3 8 4 0 1 6 7

pivot low high

(a) Initialize pivot, low, and high

 5 2 9 3 8 4 0 1 6 7

pivot low high

(b) Search forward and backward

 5 2 1 3 8 4 0 9 6 7

pivot low high

(c) 9 is swapped with 1

 5 2 1 3 8 4 0 9 6 7

pivot low high

(d) Continue search

 5 2 1 3 0 4 8 9 6 7

pivot low high

(e) 8 is swapped with 0

 5 2 1 3 0 4 8 9 6 7

pivot low high

(f) when high < low, search is over

 4 2 1 3 0 5 8 9 6 7

pivot

(g) pivot is in the right place

The index of the pivot is returned

QuickSort

Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
15

Quick Sort Time

To partition an array of n elements, it takes n-1

comparisons and n moves in the worst case. So,

the time required for partition is O(n).

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
16

Worst-Case Time

In the worst case, each time the pivot divides the

array into one big subarray with the other empty.

The size of the big subarray is one less than the

one before divided. The algorithm requires

time:

)(12...)2()1(2nOnn =+++−+−

)(2nO

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
17

Best-Case Time

In the best case, each time the pivot divides the

array into two parts of about the same size. Let

T(n) denote the time required for sorting an array

of elements using quick sort. So,

)log()
2

()
2

()(nnOn
n

T
n

TnT =++=

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
18

Average-Case Time

On the average, each time the pivot will not

divide the array into two parts of the same size

nor one empty part.

Statistically, the sizes of the two parts are very

close. So the average time is O(nlogn).

The exact average-case analysis is beyond the

scope of this book.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
19

Heap

Heap is a useful data structure for designing efficient
sorting algorithms and priority queues. A heap is a binary
tree with the following properties:

It is a complete binary tree.

Each node is greater than or equal to any of its children.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
20

Complete Binary Tree

A binary tree is complete if every level of the tree is full
except that the last level may not be full and all the
leaves on the last level are placed left-most.
For example, in the following figure, the binary trees in
(a) and (b) are complete, but the binary trees in (c) and
(d) are not complete.
Further, the binary tree in (a) is a heap, but the binary
tree in (b) is not a heap, because the root (39) is less than
its right child (42).

22 29 14 33

32 39

42

22 29 14

32 42

39

22 14 33

32 39

42

22 29

32

42

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
21

See How a Heap Works

http://www.cs.armstrong.edu/liang/anima

tion/HeapAnimation.html

http://www.cs.armstrong.edu/liang/animation/HeapAnimation.html

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
22

Representing a Heap

For a node at position i, its left child is at position 2i+1
and its right child is at position 2i+2, and its parent is (i-
1)/2.
For example, the node for element 39 is at position 4, so
its left child (element 14) is at 9 (2*4+1), its right child
(element 33) is at 10 (2*4+2), and its parent (element 42)
is at 1 ((4-1)/2).

22 29 14 33 30 17 9

32 39 44 13

42 59

62
 62 42 59 32 39 44 13 22 29 14 33 30 17 9

 [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10][11][12][13]

[10][11]

parent

left

right

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
23

Adding Elements to the Heap

Adding 3, 5, 1, 19, 11, and 22 to a heap, initially empty

 3

(a) After adding 3 (b) After adding 5 (c) After adding 1

(d) After adding 19

3

19

5 1

(e) After adding 11

3 5

19

11 1

(f) After adding 22

3 5 1

22

11 19

5

3

 5

 3 1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
24

Rebuild the heap after adding a new node

Adding 88 to the heap

(a) Add 88 to a heap

3 5 1 88

22

11 19

(b) After swapping 88 with 19

3 5 1 19

22

11 88

(b) After swapping 88 with 22

3 5 1 19

88

11 22

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
25

Removing the Root and Rebuild the Tree

22 29 14 33 30 17 9

32 39 44 13

42 59

 62

Removing root 62 from the heap

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Removing the Root and Rebuild the Tree

22 29 14 33 30 17

32 39 44 13

42 59

 9

Move 9 to root

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
27

Removing the Root and Rebuild the Tree

22 29 14 33 30 17

32 39 44 13

42 9

 59

Swap 9 with 59

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
28

Removing the Root and Rebuild the Tree

22 29 14 33 30 17

32 39 9 13

42 44

 59

Swap 9 with 44

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
29

Removing the Root and Rebuild the Tree

22 29 14 33 9 17

32 39 30 13

42 44

 59

Swap 9 with 30

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
30

The Heap Class

Heap

Heap

-lst: list

Heap()

add(e: object): None

remove(): object

getSize(): int

isEmpty(): bool

peek(): object

getLst(): list

Creates an empty heap.

Adds a new element to the heap.

Removes the root from the heap and returns it.

Returns the size of the heap.

Returns True if the list is empty.

Returns the largest element in the heap without removing it.

Returns the list for the heap.

Values are stored in a list internally.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
31

Heap Sort

HeapSort Run

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
32

Heap Sort Time

Let h denote the height for a heap of n elements.

Since a heap is a complete binary tree, the first level

has 1 node, the second level has 2 nodes, the kth level

has 2(k-1) nodes, the (h-1)th level has 2(h-2) nodes, and

the hth level has at least one node and at most 2(h-1)

nodes. Therefore,

122 22...212...21 −−− +++++++ hhh n

1212 1 −−− hh n

1)1log()1log(+++ nhn

hh n 212 1 +− hh n 2log)1log(2log 1 +−

hnh +−)1log(1

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Heap Sort Time Complexity

33

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
34

Bucket Sort and Radix Sort

All sort algorithms discussed so far are general

sorting algorithms that work for any types of keys

(e.g., integers, strings, and any comparable objects).

These algorithms sort the elements by comparing

their keys.

The lower bound for general sorting algorithms is

O(nlogn). So, no sorting algorithms based on

comparisons can perform better than O(nlogn).

However, if the keys are small integers, you can use

bucket sort without having to compare the keys.

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
35

Bucket Sort
The bucket sort algorithm works as follows.
Assume the keys are in the range from 0 to N-1. We
need N buckets labeled 0, 1, ..., and N-1.
If an element’s key is i, the element is put into the
bucket i.
Each bucket holds the elements with the same key
value. You can use an ArrayList to implement a
bucket.

buckets[0]

Elements

with key 0

buckets[1]

Elements

with key 1

buckets[2]

Elements

with key 2

…

buckets[N-1]

Elements

with key N-1

Bucket Sort

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Bucket Sort

Bucket Sort considers that the input is generated by a
random process that distributes elements uniformly
over the interval μ=[0,1].
To sort n input numbers, Bucket Sort
1. Partition μ into n non-overlapping intervals called buckets.
2. Puts each input number into its buckets
3. Sort each bucket using a simple algorithm, e.g. Insertion

Sort and then
4. Concatenates the sorted lists.

Bucket Sort considers that the input is an n element
array A and that each element A [i] in the array satisfies
0≤A [i] <1. The code depends upon an auxiliary array B
[0....n-1] of linked lists (buckets) and considers that
there is a mechanism for maintaining such lists.

36

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Bucket Sort

BUCKET-SORT (A)

1. n ← length [A]

2. for i ← 1 to n

3. do insert A [i] into list B [n A[i]]

4. for i ← 0 to n-1

5. do sort list B [i] with insertion sort.

6. Concatenate the lists B [0], B [1] ...B [n-1]

together in order.

37

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Bucket Sort

A = (0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21,

0.12, 0.23, 068)

Step 1: placing keys in bins in sorted order

38

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Bucket Sort

Step 2: concatenate the lists

39

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.

Radix Sort
Assume the keys are positive integers. The idea for the radix sort is to
divide the keys into subgroups based on their radix positions.

It applies a bucket sort repeatedly for the key values on radix positions,
starting from the least-significant position.

Example: sort a = [582, 675, 591, 189, 900, 770]

40

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
41

Radix Sort

Sort 331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9
 230

buckets[0]

331

231

buckets[1]

buckets[2]

343

453

buckets[3]

454

 34

buckets[4]

 45

 345

buckets[5]

buckets[6]

buckets[7]

buckets[8]

 59

 9

buckets[9]

230, 331, 231, 343, 453, 454, 34, 45, 345, 59, 9
 9

buckets[0]

buckets[1]

buckets[2]

 230

331

231

 34

buckets[3]

343

 45

345

buckets[4]

 453

 454

 59

buckets[5]

buckets[6]

buckets[7]

buckets[8]

buckets[9]

9, 230, 331, 231, 34, 343, 45, 345, 453, 454, 59
 9

 34

 45

 59

buckets[0]

buckets[1]

 230

 231

buckets[2]

331

343

345

buckets[3]

 453

buckets[4]

buckets[5]

buckets[6]

buckets[7]

buckets[8]

buckets[9]

9, 34, 45, 59, 230, 231, 331, 343, 345, 453

© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
42

Radix Sort Animation

http://www.cs.armstrong.edu/liang/anima

tion/RadixSortAnimation.html

http://www.cs.armstrong.edu/liang/animation/RadixSortAnimation.html

