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Chapter 17 Sorting
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Objectives

To study and analyze time efficiency of various sorting 
algorithms (§§17.2–17.7). 

To design, implement, and analyze bubble sort (§17.2). 

To design, implement, and analyze merge sort (§17.3). 

To design, implement, and analyze quick sort (§17.4). 

To design and implement a heap (§17.5).

To design, implement, and analyze heap sort (§17.5). 

To design, implement, and analyze bucket sort and radix 
sort (§17.6). 

To design, implement, and analyze external sort for large 
data in a file (§17.7). 
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why study sorting? 

Sorting is a classic subject in computer science. There are three 
reasons for studying sorting algorithms. 

– First, sorting algorithms illustrate many creative 
approaches to problem solving and these approaches can 
be applied to solve other problems. 

– Second, sorting algorithms are good for practicing 
fundamental programming techniques using selection 
statements, loops, methods, and arrays. 

– Third, sorting algorithms are excellent examples to 
demonstrate algorithm performance. 
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what data to sort?

The data to be sorted might be integers, doubles, 
characters, or objects. For simplicity, this chapter 
assumes: 

data to be sorted are integers, 

data are stored in a list, and 
data are sorted in ascending order
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Bubble Sort

 

 2  5  9  4  8  1 

 2  5  4  9  8  1 

 2  5  4  8  9  1 

 2  5  4  8  1  9 

 
(a) 1st pass 

 

2  4  5  8  1  9 

 2  4  5  8  1  9 

 2  4  5  1  8  9 

 

(b) 2nd pass 

 

2  4  5  1  8  9 

 2  4  1  5  8  9 

 

(c) 3rd pass 

 

2  1  4  5  8  9 

 

(d) 4th pass 

 

 2  9  5  4  8  1 

(e) 5th pass 
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Bubble Sort Animation

http://www.cs.armstrong.edu/liang/anima

tion/BubbleSortAnimation.html

http://www.cs.armstrong.edu/liang/animation/BubbleSortAnimation.html
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Merge Sort
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split 

 2  9  
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 5  4 

 2  

split 

 9  5  4 

 8  1   6  7 

 8   1  6   7 

 2  9  

merge 

 4  5  1  8   6  7 

 2  4  5  9  1  6  7  8 

 1  2  4  5  6  7  8 9 

merge 

merge 

divide 

conquer 

MergeSort

Run
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Merge Sort

mergeSort(list):

firstHalf = mergeSort(firstHalf);

secondHalf = mergeSort(secondHalf);

list = merge(firstHalf, secondHalf);
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Merge Two Sorted Lists

 

 2  4  5  9 
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 (a) After moving 1 to temp  (b) After moving all the 

elements in list2 to temp 

 to temp 

 2  4  5  9 

 current1 
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 current2 

 current3 

 (c) After moving 9 to 
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 current1 
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Merge Sort Time

Let T(n) denote the time required for sorting an 

array of  n elements using merge sort. Without loss 

of generality, assume n is a power of 2. The merge 

sort algorithm splits the array into two subarrays, 

sorts the subarrays using the same algorithm 

recursively, and then merges the subarrays. So, 
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Merge Sort Time
The first T(n/2) is the time for sorting the first 
half of the array and the second T(n/2) is the time 
for sorting the second half. To merge two 
subarrays, it takes at most n-1 comparisons to 
compare the elements from the two subarrays and 
n moves to move elements to the temporary array. 
So, the total time is 2n-1. Therefore,
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Quick Sort

Quick sort, developed by C. A. R. Hoare (1962), 

works as follows: The algorithm selects an 

element, called the pivot, in the array. 

Divide the array into two parts such that all the 

elements in the first part are less than or equal to 

the pivot and all the elements in the second part 

are greater than the pivot. 

Recursively apply the quick sort algorithm to the 

first part and then the second part. 
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Quick Sort

 

 5  2  9  3  8  4  0  1  6  7 

pivot 

(a) The original array 

 4  2  1  3  0  5  8  9  6  7 

 

pivot 

(b)The original array is partitioned 

 0  2  1  3  4   
(c) The partial array (4 2 1 3 0) is 

partitioned 

 0  2  1  3  (d) The partial array (0 2 1 3) is 

partitioned 

 1  2  3  

pivot 

pivot 

pivot 

(e) The partial array (2 1 3) is 

partitioned 
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Partition

 

 5  2  9  3  8  4  0  1  6  7 

pivot low high 

(a) Initialize pivot, low, and high 

 5  2  9  3  8  4  0  1  6  7 

pivot low high 

(b) Search forward and backward 

 5  2  1  3  8  4  0  9  6  7 

pivot low high 

(c) 9 is swapped with 1 

 5  2  1  3  8  4  0  9  6  7 

pivot low high 

(d) Continue search 

 5  2  1  3  0  4  8  9  6  7 

pivot low high 

(e) 8 is swapped with 0 

 5  2  1  3  0  4  8  9  6  7 

pivot low high 

(f) when high < low, search is over 

 4  2  1  3  0  5  8  9  6  7 

pivot 

(g) pivot is in the right place 

The index of the pivot is returned 

QuickSort

Run
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Quick Sort Time

To partition an array of n elements, it takes n-1

comparisons and n moves in the worst case. So, 

the time required for partition is O(n).
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Worst-Case Time

In the worst case, each time the pivot divides the 

array into one big subarray with the other empty. 

The size of the big subarray is one less than the 

one before divided. The algorithm requires     

time:
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Best-Case Time

In the best case, each time the pivot divides the 

array into two parts of about the same size. Let  

T(n) denote the time required for sorting an array 

of  elements using quick sort. So, 
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Average-Case Time

On the average, each time the pivot will not 

divide the array into two parts of the same size 

nor one empty part. 

Statistically, the sizes of the two parts are very 

close. So the average time is O(nlogn). 

The exact average-case analysis is beyond the 

scope of this book. 
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Heap

Heap is a useful data structure for designing efficient 
sorting algorithms and priority queues. A heap is a binary 
tree with the following properties:

It is a complete binary tree. 

Each node is greater than or equal to any of its children.
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Complete Binary Tree

A binary tree is complete if every level of the tree is full 
except that the last level may not be full and all the 
leaves on the last level are placed left-most. 
For example, in the following figure, the binary trees in 
(a) and (b) are complete, but the binary trees in (c) and 
(d) are not complete. 
Further, the binary tree in (a) is a heap, but the binary 
tree in (b) is not a heap, because the root (39) is less than 
its right child (42).

 
22     29     14     33    

32              39           

42                            

22     29     14        

32              42           

39                            

22              14     33    

32              39           

42                            

22     29        

32                         

42                            
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See How a Heap Works

http://www.cs.armstrong.edu/liang/anima

tion/HeapAnimation.html

http://www.cs.armstrong.edu/liang/animation/HeapAnimation.html
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Representing a Heap

For a node at position i, its left child is at position 2i+1
and its right child is at position 2i+2, and its parent is (i-
1)/2. 
For example, the node for element 39 is at position 4, so 
its left child (element 14) is at 9 (2*4+1), its right child 
(element 33) is at 10 (2*4+2), and its parent (element 42) 
is at 1 ((4-1)/2).

 
22     29     14     33     30    17     9 

32              39              44             13 

42                              59 

62 
 62  42  59  32  39  44  13  22  29  14  33  30  17  9 

 [0]  [1]  [2]  [3]  [4]  [5]  [6]  [7]  [8]  [9] [10][11][12][13] 

[10][11] 

 

 
parent 

left 

right 
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Adding Elements to the Heap

Adding 3, 5, 1, 19, 11, and 22 to a heap, initially empty

 

 3 

(a) After adding 3  (b) After adding 5  (c) After adding 1  

(d) After adding 19  

3      

19                             

5                  1 

(e) After adding 11  

3        5 

19                             

11                  1 

(f) After adding 22  

3        5        1 

22                             

11                19 

5                             

3                  

 5                             

 3                  1 
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Rebuild the heap after adding a new node

Adding 88 to the heap

 
(a) Add 88 to a heap 

3        5        1      88 

22                             

11                19 

(b) After swapping 88 with 19 

3        5        1      19 

22                             

11                88 

(b) After swapping 88 with 22 

3        5        1      19 

88                             

11                22 
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Removing the Root and Rebuild the Tree

 
22     29     14     33     30     17     9 

32              39              44             13 

42                              59 

  62 

Removing root 62 from the heap



© Copyright 2012 by Pearson Education, Inc. All Rights Reserved.
26

Removing the Root and Rebuild the Tree

 
22     29     14     33     30     17             

32              39              44             13 

42                              59 

  9 

Move 9 to root
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Removing the Root and Rebuild the Tree

 
22     29     14     33     30     17               

32              39              44             13 

42                               9 

  59 

Swap 9 with 59
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Removing the Root and Rebuild the Tree

 
22     29     14     33     30     17              

32              39               9             13 

42                              44  

  59 

Swap 9 with 44
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Removing the Root and Rebuild the Tree

 
22     29     14     33       9     17              

32              39              30             13 

42                              44  

  59 

Swap 9 with 30
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The Heap Class

Heap

 
Heap 

-lst: list 

Heap() 

add(e: object): None 

remove(): object 

getSize(): int 

isEmpty(): bool 

peek(): object 

getLst(): list 

 

Creates an empty heap. 

Adds a new element to the heap. 

Removes the root from the heap and returns it.  

Returns the size of the heap. 

Returns True if the list is empty. 

Returns the largest element in the heap without removing it. 

Returns the list for the heap. 

 

Values are stored in a list internally. 
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Heap Sort

HeapSort Run
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Heap Sort Time

Let h denote the height for a heap of n elements. 

Since a heap is a complete binary tree, the first level 

has 1 node, the second level has 2 nodes, the kth level 

has 2(k-1) nodes, the (h-1)th level has 2(h-2) nodes, and 

the hth level has at least one node and at most 2(h-1)

nodes. Therefore, 

122 22...212...21 −−− +++++++ hhh n

1212 1 −−− hh n

1)1log()1log( +++ nhn

hh n 212 1 +− hh n 2log)1log(2log 1 +−

hnh +− )1log(1
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Heap Sort Time Complexity

33
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Bucket Sort and Radix Sort 

All sort algorithms discussed so far are general 

sorting algorithms that work for any types of keys 

(e.g., integers, strings, and any comparable objects). 

These algorithms sort the elements by comparing 

their keys. 

The lower bound for general sorting algorithms is 

O(nlogn). So, no sorting algorithms based on 

comparisons can perform better than O(nlogn).

However, if the keys are small integers, you can use 

bucket sort without having to compare the keys.
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Bucket Sort
The bucket sort algorithm works as follows.
Assume the keys are in the range from 0 to N-1. We 
need N buckets labeled 0, 1, ..., and N-1. 
If an element’s key is i, the element is put into the 
bucket i. 
Each bucket holds the elements with the same key 
value. You can use an ArrayList to implement a 
bucket.

      

buckets[0] 

Elements 

with key 0 

      

buckets[1] 

Elements 

with key 1 

      

buckets[2] 

Elements 

with key 2 

 

… 

      

buckets[N-1] 

Elements 

with key N-1 

Bucket Sort
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Bucket Sort

Bucket Sort considers that the input is generated by a 
random process that distributes elements uniformly 
over the interval μ=[0,1].
To sort n input numbers, Bucket Sort
1. Partition μ into n non-overlapping intervals called buckets.
2. Puts each input number into its buckets
3. Sort each bucket using a simple algorithm, e.g. Insertion 

Sort and then
4. Concatenates the sorted lists.

Bucket Sort considers that the input is an n element 
array A and that each element A [i] in the array satisfies 
0≤A [i] <1. The code depends upon an auxiliary array B 
[0....n-1] of linked lists (buckets) and considers that 
there is a mechanism for maintaining such lists.

36
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Bucket Sort

BUCKET-SORT (A)

1. n ← length [A]

2. for i ← 1 to n

3. do insert A [i] into list B [n A[i]]

4. for i ← 0 to n-1

5. do sort list B [i] with insertion sort.

6. Concatenate the lists B [0], B [1] ...B [n-1] 

together in order.

37
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Bucket Sort

A = (0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.21,

0.12, 0.23, 068)

Step 1: placing keys in bins in sorted order

38
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Bucket Sort

Step 2: concatenate the lists

39
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Radix Sort
Assume the keys are positive integers. The idea for the radix sort is to 
divide the keys into subgroups based on their radix positions. 

It applies a bucket sort repeatedly for the key values on radix positions, 
starting from the least-significant position.

Example: sort a = [582, 675, 591, 189, 900, 770]

40
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Radix Sort

Sort 331, 454, 230, 34, 343, 45, 59, 453, 345, 231, 9
     230 

buckets[0] 

 
331 

231 

buckets[1] 

    

buckets[2] 

 
343 

453 

 

buckets[3] 

 
454 

  34 

buckets[4] 

 
     45 

   345 

buckets[5] 

  

buckets[6] 

  

buckets[7] 

  

buckets[8] 

 
      59 

        9 

buckets[9] 

230, 331, 231, 343, 453, 454, 34, 45, 345, 59, 9
         9 
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buckets[1] 

    

buckets[2] 

 230 
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231 

  34 

buckets[3] 
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  45 

345 

buckets[4] 

 
   453 

   454 

     59 

buckets[5] 

  

buckets[6] 

  

buckets[7] 

  

buckets[8] 

  

buckets[9] 

9, 230, 331, 231, 34, 343, 45, 345, 453, 454, 59
         9 

      34 

      45 

      59 

buckets[0] 

  

buckets[1] 

 
   230 

   231 

    

buckets[2] 

 
331 

343 

345 

buckets[3] 

 453 

buckets[4] 

  

buckets[5] 

  

buckets[6] 

  

buckets[7] 

  

buckets[8] 

  

buckets[9] 

9, 34, 45, 59, 230, 231, 331, 343, 345, 453
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Radix Sort Animation

http://www.cs.armstrong.edu/liang/anima

tion/RadixSortAnimation.html

http://www.cs.armstrong.edu/liang/animation/RadixSortAnimation.html

