
+

William Stallings

Computer Organization

and Architecture

10th Edition

© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.

+
Chapter 17

Parallel Processing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Multiple Processor Organization

 Single instruction, single data
(SISD) stream

 Single processor executes a
single instruction stream to
operate on data stored in a single
memory

 Uniprocessors fall into this
category

 Single instruction, multiple data
(SIMD) stream

 A single machine instruction
controls the simultaneous
execution of a number of
processing elements on a
lockstep basis

 Vector and array processors fall
into this category

 Multiple instruction, single data
(MISD) stream

 A sequence of data is transmitted
to a set of processors, each of
which executes a different
instruction sequence

 Not commercially implemented

 Multiple instruction, multiple
data (MIMD) stream

 A set of processors
simultaneously execute different
instruction sequences on different
data sets

 SMPs, clusters and NUMA systems
fit this category

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor Organizations

Single Instruction,

Single Data Stream

(SISD)

Single Instruction,

Multiple Data Stream

(SIMD)

Multiple Instruction,

Single Data Stream

(MISD)

Multiple Instruction,

Multiple Data Stream

(MIMD)

Vector

Processor

Clusters

Uniprocessor

Array

Processor

Symmetric

Multiprocessor

(SMP)

Nonumiform

Memory

Access

(NUMA)

Shared Memory

(tightly coupled)

Distributed Memory

(loosely coupled)

Figure 17.1 A Taxonomy of Parallel Processor Architectures

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

LMn

DS

LM1

LM2

DS

DS

IS

IS

IS

CU

PUn LMn

DS

PU1 LM1

PU2 LM2

DS

DS

IS

(b) SIMD (with distributed memory)

CU
IS

(a) SISD

PU MU
DS

CU1

CU2

CUn PUn

IS

IS

IS DS

(c) MIMD (with shared memory)

PU1

PU2

DS

DS

CU1

CU2

CUn PUn

PU1

PU2

In
te

r
c
o
n

n
ec

ti
o

n

N
et

w
o
rk

S
h

a
r
ed

M
em

o
ry

(d) MIMD (with distributed memory)

Figure 17.2 Alternative Computer Organizations

CU = control unit

IS = instruction stream

PU = processing unit

DS = data stream

MU = memory unit

LM = local memory

SISD = single instruction,

 single data stream

SIMD = single instruction,

 multiple data stream

MIMD = multiple instruction,

 multiple data stream

Symmetric Multiprocessor (SMP)

A stand alone computer with
the following characteristics:

Two or more
similar

processors of
comparable

capacity

Processors
share same
memory and
I/O facilities

• Processors are
connected by a
bus or other
internal
connection

• Memory access
time is
approximately
the same for
each processor

All
processors
share access
to I/O
devices

• Either through
same channels
or different
channels giving
paths to same
devices

All
processors

can perform
the same
functions
(hence

“symmetric”)

System
controlled by
integrated
operating
system

• Provides
interaction
between
processors and
their programs
at job, task, file
and data
element levels

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process 1

Figure 17.3 Multiprogramming and Multiprocessing

Process 2

Process 3

(a) Interleaving (multiprogramming, one processor)

Process 1

Process 2

Process 3

(b) Interleaving and overlapping (multiprocessing; two processors)

Blocked Running

Time

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processor

Main Memory

Interconnection

Network

Figure 17.4 Generic Block Diagram of a Tightly Coupled Multiprocessor

Processor Processor

I/O

I/O

I/O

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

L1 Cache

Processor

Main

Memory I/O

Subsytem

shared bus

I/O

Adapter

Processor Processor

Figure 17.5 Symmetric Multiprocessor Organization

L1 Cache L1 Cache

L2 Cache L2 Cache L2 Cache

I/O

Adapter

I/O

Adapter

+

 Simplicity

 Simplest approach to multiprocessor organization

 Flexibility

 Generally easy to expand the system by attaching more

processors to the bus

 Reliability

 The bus is essentially a passive medium and the failure of any

attached device should not cause failure of the whole system

The bus organization has several

attractive features:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

 Main drawback is performance

 All memory references pass through the common bus

 Performance is limited by bus cycle time

 Each processor should have cache memory

 Reduces the number of bus accesses

 Leads to problems with cache coherence

 If a word is altered in one cache it could conceivably invalidate a

word in another cache

 To prevent this the other processors must be alerted that an

update has taken place

 Typically addressed in hardware rather than the operating system

Disadvantages of the bus organization:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Multiprocessor Operating System

Design Considerations

 Simultaneous concurrent processes

 OS routines need to be reentrant to allow several processors to execute the same IS code simultaneously

 OS tables and management structures must be managed properly to avoid deadlock or invalid operations

 Scheduling

 Any processor may perform scheduling so conflicts must be avoided

 Scheduler must assign ready processes to available processors

 Synchronization

 With multiple active processes having potential access to shared address spaces or I/O resources, care must be
taken to provide effective synchronization

 Synchronization is a facility that enforces mutual exclusion and event ordering

 Memory management

 In addition to dealing with all of the issues found on uniprocessor machines, the OS needs to exploit the available
hardware parallelism to achieve the best performance

 Paging mechanisms on different processors must be coordinated to enforce consistency when several processors
share a page or segment and to decide on page replacement

 Reliability and fault tolerance

 OS should provide graceful degradation in the face of processor failure

 Scheduler and other portions of the operating system must recognize the loss of a processor and restructure
accordingly

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache Coherence

 Attempt to avoid the need for additional hardware circuitry

and logic by relying on the compiler and operating system to

deal with the problem

 Attractive because the overhead of detecting potential

problems is transferred from run time to compile time, and

the design complexity is transferred from hardware to

software

 However, compile-time software approaches generally must make

conservative decisions, leading to inefficient cache utilization

Software Solutions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Cache Coherence

 Generally referred to as cache coherence protocols

 These solutions provide dynamic recognition at run time of
potential inconsistency conditions

 Because the problem is only dealt with when it actually arises
there is more effective use of caches, leading to improved
performance over a software approach

 Approaches are transparent to the programmer and the
compiler, reducing the software development burden

 Can be divided into two categories:

 Directory protocols

 Snoopy protocols

Hardware-Based Solutions

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Directory Protocols

Collect and
maintain

information about
copies of data in

cache

Directory stored in
main memory

Requests are
checked against

directory

Appropriate
transfers are
performed

Creates central
bottleneck

Effective in large
scale systems with

complex
interconnection

schemes

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Snoopy Protocols

 Distribute the responsibility for maintaining cache coherence
among all of the cache controllers in a multiprocessor

 A cache must recognize when a line that it holds is shared with other
caches

 When updates are performed on a shared cache line, it must be
announced to other caches by a broadcast mechanism

 Each cache controller is able to “snoop” on the network to observe
these broadcast notifications and react accordingly

 Suited to bus-based multiprocessor because the shared bus
provides a simple means for broadcasting and snooping

 Care must be taken that the increased bus traffic required for
broadcasting and snooping does not cancel out the gains from the
use of local caches

 Two basic approaches have been explored:

 Write invalidate

 Write update (or write broadcast)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Write Invalidate

 Multiple readers, but only one writer at a time

 When a write is required, all other caches of the line are

invalidated

 Writing processor then has exclusive (cheap) access until

line is required by another processor

 Most widely used in commercial multiprocessor systems

such as the x86 architecture

 State of every line is marked as modified, exclusive, shared

or invalid

 For this reason the write-invalidate protocol is called MESI

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Write Update

Can be multiple readers and writers

When a processor wishes to update a shared line
the word to be updated is distributed to all others
and caches containing that line can update it

Some systems use an adaptive mixture of both
write-invalidate and write-update mechanisms

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
MESI Protocol

 Modified

 The line in the cache has been modified and is available only in
this cache

 Exclusive

 The line in the cache is the same as that in main memory and is
not present in any other cache

 Shared

 The line in the cache is the same as that in main memory and may
be present in another cache

 Invalid

 The line in the cache does not contain valid data

To provide cache consistency on an SMP the data cache

supports a protocol known as MESI:

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 M

Modified

E

Exclusive

S

Shared

I

Invalid

This cache line

valid?
Yes Yes Yes No

The memory

copy is…
out of date valid valid —

Copies exist in

other caches?
No No Maybe Maybe

A write to this

line…

does not go to

bus

does not go to

bus

goes to bus and

updates cache

goes directly to

bus

Table 17.1

MESI Cache Line States

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Dirty line copyback

Invalidate transaction

Read-with-intent-to-modify

Cache line fill

RH Read hit
RMS Read miss, shared
RME Read miss, exclusive
WH Write hit
WM Write miss
SHR Snoop hit on read
SHW Snoop hit on write or

read-with-intent-to-modify

Figure 17.6 MESI State Transition Diagram

Invalid Shared

Modified

(a) Line in cache at initiating processor

RH

WH

RH

RH

Exclusive

RMS

WH

SHW

SH
W

R
M

E

SH
R

Invalid Shared

Modified

(b) Line in snooping cache

Exclusive

S
H

R

S
H

W

W
M

SHR

W
H

+
Multithreading and Chip

Multiprocessors

 Processor performance can be measured by the rate at which it
executes instructions

 MIPS rate = f * IPC

 f = processor clock frequency, in MHz

 IPC = average instructions per cycle

 Increase performance by increasing clock frequency and
increasing instructions that complete during cycle

 Multithreading

 Allows for a high degree of instruction-level parallelism without
increasing circuit complexity or power consumption

 Instruction stream is divided into several smaller streams, known as
threads, that can be executed in parallel

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Definitions of Threads

and Processes Thread in multithreaded
processors may or may not be

the same as the concept of
software threads in a

multiprogrammed operating
system

Thread is concerned with
scheduling and execution,

whereas a process is
concerned with both

scheduling/execution and
resource and resource

ownership

Process:

• An instance of program running on
computer

• Two key characteristics:

• Resource ownership

• Scheduling/execution

Process switch

• Operation that switches the processor
from one process to another by saving all
the process control data, registers, and
other information for the first and
replacing them with the process
information for the second

Thread:

• Dispatchable unit of work within a
process

• Includes processor context (which
includes the program counter and
stack pointer) and data area for stack

• Executes sequentially and is
interruptible so that the processor can
turn to another thread

Thread switch

• The act of switching processor control
between threads within the same
process

• Typically less costly than process
switch

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+

Implicit and Explicit

Multithreading

 All commercial processors and most

experimental ones use explicit multithreading

 Concurrently execute instructions from different

explicit threads

 Interleave instructions from different threads on

shared pipelines or parallel execution on parallel

pipelines

 Implicit multithreading is concurrent execution

of multiple threads extracted from single

sequential program

 Implicit threads defined statically by compiler or

dynamically by hardware

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+ Approaches to Explicit

Multithreading

 Interleaved

 Fine-grained

 Processor deals with two or
more thread contexts at a
time

 Switching thread at each
clock cycle

 If thread is blocked it is
skipped

 Simultaneous (SMT)

 Instructions are
simultaneously issued from
multiple threads to
execution units of
superscalar processor

 Blocked

 Coarse-grained

 Thread executed until event
causes delay

 Effective on in-order
processor

 Avoids pipeline stall

 Chip multiprocessing

 Processor is replicated on a
single chip

 Each processor handles
separate threads

 Advantage is that the
available logic area on a chip
is used effectively

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A

A

A

A

A

A

A

A

A

th
re

a
d

 s
w

it
ch

e
s

A

B

C

D

A

B

B C D

th
re

a
d

 s
w

it
c
h

es

A

D

B

D

A

B

D

A

A

B

C

D

A

B

B C D

th
re

a
d

 s
w

it
ch

es

A

D

B

D

A

B

D

A

A N

N

NN

NN

NNN

N

N

B

C

D

A

B

B C D

th
re

a
d

 s
w

it
ch

es

A

NB

A

B

N N N

A NN

B

B

C

B C D A

A

D

A

A

D

D

D

A AA

D

D

B

C

A

B

B

B

B

A

A

A

B C

A D

A C

B

A

A A BD D

A

A

D

B C D A

B

B

B

BA

A

A

A

A

A A

D

D D

D

C

C

C

C

C C

B C D

th
re

a
d

 s
w

it
c
h

es

A

B

A

A

B

issue bandwidth

latency

cycle
cy

cl
es

(a) single-threaded

scalar

(g) VLIW (h) interleaved

multithreading

VLIW

(i) blocked

multithreading

VLIW

(j) simultaneous

multithreading

(SMT)

(k) chip multiprocessor

(multicore)

Figure 17.7 Approaches to Executing Multiple Threads

(b) interleaved

multithreading

scalar

(c) blocked

multithreading

scalar

(d) superscalar

(e) interleaved

multithreading

superscalar

(f) blocked

multithreading

superscalar

iss
ue slo

t

A

A

B

B

C

B C D

A

th
re

a
d

 s
w

it
ch

e
s

A

A

A

B

B

B C D

A

A

A

A

A

A A

A A A A

A

A

N

A

A

N

N

A

A

N

N

N

A

AA NN

N N N

AD AA

B DB DDD

B

B B

B

D

D

D

D

+

Clusters

 Alternative to SMP as an approach to providing
high performance and high availability

 Particularly attractive for server applications

 Defined as:

 A group of interconnected whole computers working
together as a unified computing resource that can
create the illusion of being one machine

 (The term whole computer means a system that can run
on its own, apart from the cluster)

 Each computer in a cluster is called a node

 Benefits:

 Absolute scalability

 Incremental scalability

 High availability

 Superior price/performance

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

P P

High-speed message link

High-speed message link

M I/O I/O

P P

I/OI/O M

(a) Standby server with no shared disk

P P

RAID

M I/O I/O

P P

I/OI/O M

(b) Shared disk

Figure 17.8 Cluster Configurations

I/O I/O

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Clustering Method Description Benefits Limitations

Passive Standby A secondary server

takes over in case of

primary server failure.

Easy to implement. High cost because the

secondary server is

unavailable for other
processing tasks.

Active Secondary: The secondary server is
also used for processing

tasks.

Reduced cost because
secondary servers can

be used for processing.

Increased complexity.

Separate Servers Separate servers have

their own disks. Data is

continuously copied
from primary to

secondary server.

High availability. High network and

server overhead due to

copying operations.

Servers Connected

to Disks

Servers are cabled to the

same disks, but each

server owns its disks. If
one server fails, its disks

are taken over by the

other server.

Reduced network and

server overhead due to

elimination of copying
operations.

Usually requires disk

mirroring or RAID

technology to
compensate for risk of

disk failure.

Servers Share Disks Multiple servers

simultaneously share
access to disks.

Low network and server

overhead. Reduced risk
of downtime caused by

disk failure.

Requires lock manager

software. Usually used
with disk mirroring or

RAID technology.

Table 17.2

Clustering Methods: Benefits and Limitations

+
Operating System Design Issues

 How failures are managed depends on the clustering method used

 Two approaches:

 Highly available clusters

 Fault tolerant clusters

 Failover

 The function of switching applications and data resources over from a failed system
to an alternative system in the cluster

 Failback

 Restoration of applications and data resources to the original system once it
has been fixed

 Load balancing

 Incremental scalability

 Automatically include new computers in scheduling

 Middleware needs to recognize that processes may switch between machines

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Parallelizing Computation

Effective use of a cluster requires executing
software from a single application in parallel

Three approaches are:

Parallelizing complier

• Determines at compile time
which parts of an application
can be executed in parallel

• These are then split off to be
assigned to different
computers in the cluster

Parallelized
application

• Application written from the
outset to run on a cluster and
uses message passing to
move data between cluster
nodes

Parametric computing

• Can be used if the essence of
the application is an
algorithm or program that
must be executed a large
number of times, each time
with a different set of starting
conditions or parameters

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Net. Interface HW

Comm SW

PC/Workstation

Net. Interface HW

Comm SW

PC/Workstation

Net. Interface HW

Comm SW

PC/Workstation

Net. Interface HW

Comm SW

PC/Workstation

Net. Interface HW

Comm SW

PC/Workstation

Cluster Middleware
(Single System Image and Availability Infrastructure)

Sequential Applications

High Speed Network/Switch

Parallel Applications

Parallel Programming Environment

Figure 17.9 Cluster Computer Architecture

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

N 100GbE

100GbE

10GbE

&

40GbE

Figure 17.10 Example 100-Gbps Ethernet

Configuration for Massive Blade Server Cloud Site

Eth Switch

Eth Switch Eth Switch

Eth Switch

Additional blade

server racks

Eth Switch Eth Switch

Eth Switch Eth Switch

+
Clusters Compared to SMP

 Easier to manage and
configure

 Much closer to the original
single processor model for
which nearly all applications
are written

 Less physical space and lower
power consumption

 Well established and stable

 Far superior in terms of
incremental and absolute
scalability

 Superior in terms of
availability

 All components of the system
can readily be made highly
redundant

SMP Clustering

 Both provide a configuration with multiple processors to
support high demand applications

 Both solutions are available commercially

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

+
Nonuniform Memory Access

(NUMA)

 Alternative to SMP and clustering

 Uniform memory access (UMA)

 All processors have access to all parts of main memory using loads and stores

 Access time to all regions of memory is the same

 Access time to memory for different processors is the same

 Nonuniform memory access (NUMA)

 All processors have access to all parts of main memory using loads and stores

 Access time of processor differs depending on which region of main memory
is being accessed

 Different processors access different regions of memory at different speeds

 Cache-coherent NUMA (CC-NUMA)

 A NUMA system in which cache coherence is maintained among the caches of
the various processors

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Motivation

SMP has practical limit to
number of processors that
can be used

• Bus traffic limits to between 16 and
64 processors

In clusters each node has its
own private main memory

• Applications do not see a large
global memory

• Coherency is maintained by
software rather than hardware

NUMA retains SMP flavor
while giving large scale

multiprocessing

Objective with NUMA is to
maintain a transparent

system wide memory while
permitting multiple

multiprocessor nodes, each
with its own bus or internal

interconnect system

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

L1 Cache

Processor

1-1

Main

Memory 1

Processor

1-m

Figure 17.11 CC-NUMA Organization

L1 Cache

L2 Cache L2 Cache Directory

I/O

I/O

L1 Cache

Processor

N-1

Main

Memory N

Processor

N-m

L1 Cache

L2 Cache L2 Cache

Directory

L1 Cache

Processor

2-1

Main

Memory 2

Processor

2-m

L1 Cache

L2 Cache L2 Cache Directory

I/O

Interconnect

Network

+
NUMA Pros and Cons

 Main advantage of a CC-

NUMA system is that it can

deliver effective performance

at higher levels of parallelism

than SMP without requiring

major software changes

 Bus traffic on any individual

node is limited to a demand

that the bus can handle

 If many of the memory

accesses are to remote nodes,

performance begins to break

down

 Does not transparently look

like an SMP

 Software changes will be

required to move an operating

system and applications from

an SMP to a CC-NUMA system

 Concern with availability

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1 7 .1 2 Cloud Com put ing Elem ents

Broad

Netw ork Access

Resource Pooling

Rapid

Elast icit y
E

s
s

e
n

ti
a

l

C
h

a
r
a

c
te

r
is

ti
c

s

S
e

r
v

ic
e

M
o

d
e

ls

D
e

p
lo

y
m

e
n

t

M
o

d
e

ls

Measured

Service

On- Dem and

Self- Service

Public Private Hybrid Com m unit y

Softw are as a Service (SaaS)

Plat form as a Service (PaaS)

I nfrastructure as a Service (I aaS)

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1 7 .1 3 Cloud Service Models

(a) SaaS

Cloud
Infrastructure

(visible only
to provider)

Cloud Platform
(visible only to provider)

Cloud Application Software
(provided by cloud, visible to subscriber)

(b) PaaS

Cloud
Infrastructure

(visible only
to provider)

Cloud Platform
(visible to subscriber)

Cloud Application Software
(developed by subscriber)

(c) IaaS

Cloud
Infrastructure

(visible to
subscriber)

Cloud Platform
(visible to subscriber)

Cloud Application Software
(developed by subscriber)

+
Deployment Models

 Public cloud

 The cloud infrastructure is
made available to the general
public or a large industry
group and is owned by an
organization selling cloud
services

 Major advantage is cost

 Private cloud

 A cloud infrastructure
implemented within the
internal IT environment of the
organization

 A key motivation for opting
for a private cloud is security

 Community cloud

 Like a private cloud it is not
open to any subscriber

 Like a public cloud the
resources are shared among a
number of independent
orgaizations

 Hybrid cloud

 The cloud infrastructure is a
composition of two or more
clouds that remain unique
entities but are bound
together by standardized or
proprietary technology that
enables data and application
portability

 Sensitive information can be
placed in a private area of the
cloud and less sensitive data
can take advantage of the cost
benefits of the public cloud

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Netw ork

or I nternet

Router

Router

Servers

LAN

sw itch

LAN

sw itch

Enterprise -

Cloud User

Cloud

service

provider

Figure 1 7 .1 4 Cloud Com p ut ing Cont ext

+
Cloud Computing Reference

Architecture

 NIST SP 500-292 establishes a reference architecture,

described as:

“The NIST cloud computing reference architecture focuses on

the requirements of “what” cloud services provide, not a “how

to” design solution and implementation. The reference

architecture is intended to facilitate the understanding of the

operational intricacies in cloud computing. It does not

represent the system architecture of a specific

cloud computing system; instead it is a tool for describing,

discussing, and developing a system-specific

architecture using a common framework of reference.”

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 1 7 .1 5 NI ST Cloud Com put ing Reference Architecture

Cloud

Consumer

Cloud

Auditor

Service

Intermediation

Service

Aggregation

Service

Arbitrage

Cloud

Broker

Cloud Provider

Security

Audit

Performance

Audit

Privacy

Impact Audit

SaaS

Service Layer

Service Orchestration Cloud

Service

Management

PaaS

Hardware

Physical Resource Layer

Facility

Resource Abstraction

and Control Layer

IaaS

Business

Support

Provisioning/

Configuration

Portability/

Interoperability

S
ec

u
ri

ty

P
ri

v
a

cy

Cloud Carrier

+ Summary

 Multiple processor organizations

 Types of parallel processor systems

 Parallel organizations

 Symmetric multiprocessors

 Organization

 Multiprocessor operating system
design considerations

 Cache coherence and the MESI

protocol

 Software solutions

 Hardware solutions

 The MESI protocol

 Multithreading and chip multiprocessors

 Implicit and explicit multithreading

 Approaches to explicit multithreading

 Clusters

 Cluster configurations

 Operating system design issues

 Cluster computer architecture

 Blade servers

 Clusters compared to SMP

 Nonuniform memory access

 Motivation

 Organization

 NUMA Pros and cons

 Cloud computing

 Cloud computing elements

 Cloud computing reference architecture

Chapter 17

Parallel

Processing

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

