Artificial Intelligence for Medicine II

Spring 2025

Lecture 51: Supervised Learning Naïve Bayes Classifier

(Many slides adapted from Bing Liu, Han, Kamber & Pei; Tan, Steinbach, Kumar and the web)

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes theorem:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Using Bayes Theorem for Classification

- Consider each attribute and class label as random variables
- Given a record with attributes (X₁, X₂,..., X_d), the goal is to predict class Y
 - Specifically, we want to find the value of Y that maximizes P(Y| X₁, X₂,..., X_d)
- Can we estimate P(Y| X₁, X₂,..., X_d) directly from data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem for Classification

- Approach:
 - compute posterior probability $P(Y \mid X_1, X_2, ..., X_d)$ using the Bayes theorem

$$P(Y | X_1 X_2 ... X_n) = \frac{P(X_1 X_2 ... X_d | Y) P(Y)}{P(X_1 X_2 ... X_d)}$$

- Maximum a-posteriori: Choose Y that maximizes
 P(Y | X₁, X₂, ..., X_d)
- Equivalent to choosing value of Y that maximizes $P(X_1, X_2, ..., X_d|Y) P(Y)$
- How to estimate P(X₁, X₂, ..., X_d | Y)?

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

We need to estimate

P(Evade = Yes | X) and P(Evade = No | X)

In the following we will replace

Evade = Yes by Yes, and

Evade = No by No

Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Using Bayes Theorem:

$$P(Yes \mid X) = \frac{P(X \mid Yes)P(Yes)}{P(X)}$$

$$P(No \mid X) = \frac{P(X \mid No)P(No)}{P(X)}$$

□ How to estimate P(X | Yes) and P(X | No)?

Conditional Independence

- X and Y are conditionally independent given Z if P(X|YZ)
 = P(X|Z)
- Example: Arm length and reading skills
 - Young child has shorter arm length and limited reading skills, compared to adults
 - If age is fixed, no apparent relationship between arm length and reading skills
 - Arm length and reading skills are conditionally independent given age

Naïve Bayes Classifier

 Assume independence among attributes X_i when class is given:

$$-P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j)... P(X_d | Y_j)$$

- Now we can estimate P(X_i| Y_j) for all X_i and Y_j combinations from the training data
- New point is classified to Y_j if $P(Y_j)$ Π $P(X_i|Y_j)$ is maximal.

Towards Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector X = (x₁, x₂, ..., x_n)
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X). This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

- Since P(X) is constant for all classes, only needs to be maximized $P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$
- Once the probability P(X|C_i) is known, assign X to the class with maximum P(X|C_i)*P(C_i)

Derivation of Naïve Bayes Classifier

 A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ 1 $-\frac{(x-\mu)^2}{2}$

notation of $g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

and $P(x_k|C_i)$ is

$$P(\mathbf{X} | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Naïve Bayes on Example Data

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Estimate Probabilities from Data

			-	
Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

For categorical attributes:

$$P(X_i = c| y) = n_c/n$$

- where |X_i =c| is number of instances having attribute value X_i =c and belonging to class y
- Examples:

Estimate Probabilities from Data

- For continuous attributes:
 - Discretization: Partition the range into bins:
 - Replace continuous value with bin value
 - Attribute changed from continuous to ordinal
 - Probability density estimation:
 - Assume attribute follows a normal distribution.
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, use it to estimate the conditional probability P(X_i|Y)

Estimate Probabilities from Data

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(X_i | Y_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(X_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (X_i,Y_i) pair
- For (Income, Class=No):
 - If Class=No
 - ◆ sample mean = 110
 - ◆ sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (Refund = No, Divorced, Income = 120K)$$

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/7
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0
```

For Taxable Income:

```
If class = No: sample mean = 110
sample variance = 2975
If class = Yes: sample mean = 90
sample variance = 25
```

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No
```

Naïve Bayes Classifier can make decisions with partial information about attributes in the test record

Even in absence of information about any attributes, we can use Apriori Probabilities of Class Variable:

Naïve Bayes Classifier:

```
P(Refund = Yes | No) = 3/7
P(Refund = No | No) = 4/7
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7
P(Marital Status = Divorced | No) = 1/7
P(Marital Status = Married | No) = 4/7
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0
```

For Taxable Income:

```
If class = No: sample mean = 110
sample variance = 2975
If class = Yes: sample mean = 90
sample variance = 25
```

```
P(Yes) = 3/10
P(No) = 7/10
```

If we only know that marital status is Divorced, then:

```
P(Yes \mid Divorced) = 1/3 \times 3/10 / P(Divorced)

P(No \mid Divorced) = 1/7 \times 7/10 / P(Divorced)
```

If we also know that Refund = No, then

```
P(Yes | Refund = No, Divorced) = 1 \times 1/3 \times 3/10 /
P(Divorced, Refund = No)
P(No | Refund = No, Divorced) = 4/7 \times 1/7 \times 7/10 /
```

If we also know that Taxable Income = 120, then

P(Divorced, Refund = No)

Issues with Naïve Bayes Classifier

Given a Test Record:

$$X = (Married)$$

Naïve Bayes Classifier:

P(Refund = Yes | No) = 3/7

 $P(Refund = No \mid No) = 4/7$

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1

P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3

P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110

sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25

P(Yes) = 3/10

P(No) = 7/10

 $P(Yes \mid Married) = 0 \times 3/10 / P(Married)$

 $P(No \mid Married) = 4/7 \times 7/10 / P(Married)$

Issues with Naïve Bayes Classifier

Consider the table with Tid = 7 deleted

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Naïve Bayes Classifier:

Given X = (Refund = Yes, Divorced, 120K)

$$P(X \mid No) = 2/6 \times 0 \times 0.0083 = 0$$

 $P(X \mid Yes) = 0 \times 1/3 \times 1.2 \times 10^{-9} = 0$

Naïve Bayes will not be able to classify X as Yes or No!

Issues with Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Need to use other estimates of conditional probabilities than simple fractions

 n: number of training
- Probability estimation:

original:
$$P(X_i = c|y) = \frac{n_c}{n}$$

Laplace Estimate:
$$P(X_i = c|y) = \frac{n_c + 1}{n + v}$$

m – estimate:
$$P(X_i = c|y) = \frac{n_c + mp}{n + m}$$

n: number of training instances belonging to class *y*

 n_c : number of instances with $X_i = c$ and Y = y

v: total number of attribute values that X_i can take

p: initial estimate of $(P(X_i = c/y) \text{ known apriori})$

m: hyper-parameter for our confidence in *p*

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

P(A|M)P(M) > P(A|N)P(N)

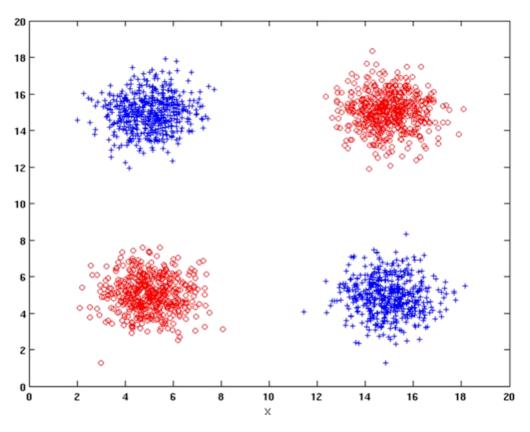
=> Mammals

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Redundant and correlated attributes will violate class conditional assumption
 - Use other techniques such as Bayesian Belief Networks (BBN)

Naïve Bayes

How does Naïve Bayes perform on the following dataset?



Conditional independence of attributes is violated

Naïve Bayesian Classifier: Comments

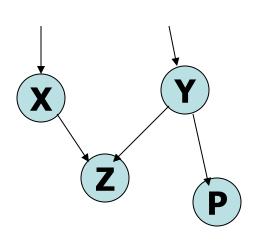
- Advantages :
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history etc
 Symptoms: fever, cough etc., Disease: lung cancer, diabetes etc
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks

The independence hypothesis...

- ... makes computation possible
- ... yields optimal classifiers when satisfied
- ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- Attempts to overcome this limitation:
 - Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes
 - Decision trees, that reason on one attribute at the time, considering most important attributes first

Bayesian Belief Networks

- Bayesian belief network allows a subset of the variables conditionally independent
- A graphical model of causal relationships
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution



- Nodes: random variables
- ☐ Links: dependency
- ☐ X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- Has no loops or cycles
 March 20, 2025

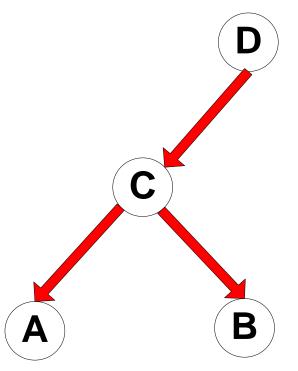
Bayesian Belief Networks

- Provides graphical representation of probabilistic relationships among a set of random variables
- Consists of:
 - A directed acyclic graph (dag)
 - Node corresponds to a variable
 - Arc corresponds to dependence relationship between a pair of variables



A probability table associating each node to its immediate parent

Conditional Independence



D is parent of C

A is child of C

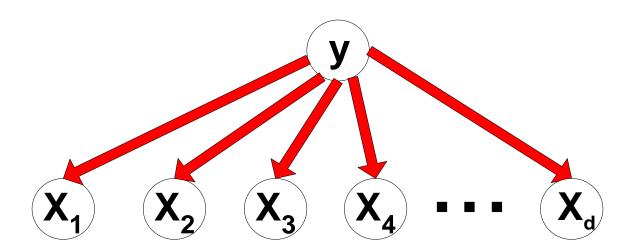
B is descendant of D

D is ancestor of A

 A node in a Bayesian network is conditionally independent of all of its nondescendants, if its parents are known

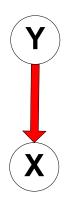
Conditional Independence

Naïve Bayes assumption:



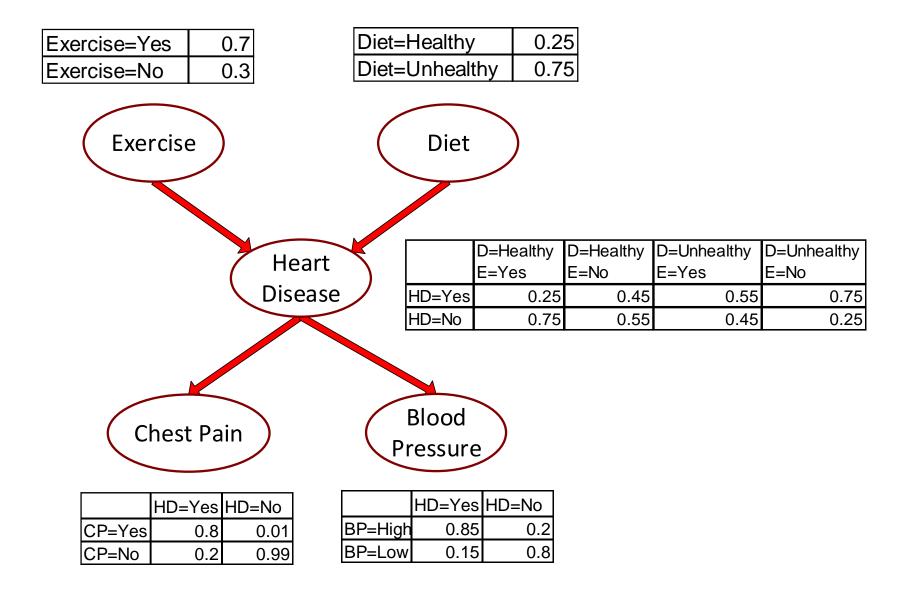
Probability Tables

- If X does not have any parents, table contains prior probability P(X)
- If X has only one parent (Y), table contains conditional probability P(X|Y)



 If X has multiple parents (Y₁, Y₂,..., Y_k), table contains conditional probability P(X|Y₁, Y₂,..., Y_k)

Example of Bayesian Belief Network



Example of Inferencing using BBN

- Given: X = (E=No, D=Yes, CP=Yes, BP=High)
 - Compute P(HD|E,D,CP,BP)?
- P(HD=Yes| E=No,D=Yes) = 0.55
 P(CP=Yes| HD=Yes) = 0.8
 P(BP=High| HD=Yes) = 0.85
 - P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.55 \times 0.8 \times 0.85 = 0.374$
- P(HD=No| E=No,D=Yes) = 0.45
 P(CP=Yes| HD=No) = 0.01
 P(BP=High| HD=No) = 0.2
 - P(HD=No|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.45 \times 0.01 \times 0.2 = 0.0009$

Classify X as Yes