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Artificail Neural Networks (ANN)

• Two basic motivations for ANN research:

– to model brain function

– to solve engineering (and business) problems

• So far as modeling the brain goes, it is worth remembering:

 “… metaphors for the brain are usually based on the 

most complex device currently available: in the seventeenth 

century the brain was compared to a hydraulic system, and in 

the early twentieth century to a telephone switchboard. Now, 

of course, we compare the brain to a digital computer.”
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Biological inspirations

• The brain uses massively parallel computation

– The human brain contains about 10 billion (~1011 neurons ) 
nerve cells (neurons)

– Each neuron is connected to the others through 10000 
synapses (~104 connections per neuron) 

• Neurons respond slowly

– 10-3 s compared to 10-9 s for electrical circuits

• Properties of the brain 

– It can learn, reorganize itself from experience

– It adapts to the environment 

– It is robust and fault tolerant
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Biological neuron

• A neuron has

– A branching input (dendrites)

– A branching output (the axon)

• The information circulates from the dendrites to the axon via the cell 
body

• Axon connects to dendrites via synapses

– Synapses vary in strength

– Synapses may be excitatory or inhibitory 

axon

cell body

synapse

nucleus

dendrites
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Artificial Neural Networks 

• Historically, ANN theories were first developed by 

neurophysiologists. For engineers (and others), the attractions of 

ANN processing include:

– inherent parallelism

– speed (avoiding the von Neumann bottleneck)

– distributed “holographic” storage of information

– robustness

– generalization

– learning by example rather than having to understand the 

underlying problem (a double-edged sword!)

• Remember that every ANN is a mathematical model. There is 

usually a good statistical explanation of ANN behaviour
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What is a neuron? 

• a (biological) neuron is a node that 

has many inputs and one output

• inputs come from other neurons 

or sensory organs

• the inputs are weighted

• weights can be both positive and 

negative

• inputs are summed at the node to 

produce an activation value

• if the activation is greater than 

some threshold, the neuron fires

 f
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What is a neuron ? - 1

• Definition : Non linear, parameterized function with 

restricted output range
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What is a neuron?

• In order to simulate neurons on a computer, we need a 

mathematical model of this node

– node i has n inputs xj

– each connection has an associated weight wij

– the net input to node i is the sum of the products of the 

connection inputs and their weights:

– The output of node i is determined by applying a non-linear 

transfer function f to the net input:
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What is a neuron?

• A common choice for the transfer (activation) function is 

the sigmoid:

• The sigmoid has similar non-linear properties to the 

transfer function of real neurons:

– bounded below by 0

– saturates when input becomes large

– bounded above by 1
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What is a neural network?

• Now that we have a model for an artificial 

neuron, we can imagine connecting many of then 

together to form an Artificial Neural Network:

Input layer

Hidden layer

Output layer
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Learning

• The procedure that consists in estimating the parameters of neurons so 
that the whole network can perform a specific task

• The Learning process (supervised)

– Present the network a number of inputs and their corresponding 
outputs

– See how closely the actual outputs match the desired ones

– Modify the parameters (weights) to better approximate the desired 
outputs
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Applications of ANNs

• Predicting financial time series

• Diagnosing medical conditions

• Identifying clusters in customer databases

• Identifying fraudulent credit card transactions

• Hand-written character recognition (cheques)

• Predicting the failure rate of machinery

• Natural Language Processing

• and many more….



Artificial Neural Networks (ANN)

• Basic Idea: A complex non-linear function can be 

learned as a composition of simple processing units 

• Simplest ANN: Perceptron (single neuron)



Basic Architecture of Perceptron

Learns linear decision boundaries

Related to logistic regression (activation function is sign 

instead of sigmoid)

Activation Function



Perceptron Example

X1 X2 X3 Y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

X
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X
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X
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Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.



Perceptron Example

X1 X2 X3 Y
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Perceptron Learning Rule

• Initialize the weights (w0, w1, …, wd)

• Repeat

– For each training example (xi, yi)

•  Compute ෝ𝑦𝑖
•  Update the weights: 

• Until stopping condition is met

• k: iteration number; 𝜆: learning rate 



Perceptron Learning Rule
• Weight update formula:

• Intuition:

– Update weight based on error: e =  

• If y = ො𝑦, e=0: no update needed

• If y > ො𝑦, e=2: weight must be increased (assuming Xij is 

positive) so  that  ො𝑦 will increase

• If y < ො𝑦, e=-2: weight must be decreased (assuming Xij is 

positive) so that  ො𝑦 will decrease



Example of Perceptron Learning

X1 X2 X3 Y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

Epoch w0 w1 w2 w3

0 0 0 0 0

1 -0.2 0 0.2 0.2

2 -0.2 0 0.4 0.2

3 -0.4 0 0.4 0.2

4 -0.4 0.2 0.4 0.4

5 -0.6 0.2 0.4 0.2

6 -0.6 0.4 0.4 0.2

1.0=

 w0 w1 w2 w3

0 0 0 0 0

1 -0.2 -0.2 0 0

2 0 0 0 0.2

3 0 0 0 0.2

4 0 0 0 0.2

5 -0.2 0 0 0

6 -0.2 0 0 0

7 0 0 0.2 0.2

8 -0.2 0 0.2 0.2

Weight updates over first epoch

Weight updates over 

all epochs



Perceptron Learning

• Since y is a linear 
combination of input 
variables, decision 
boundary is linear



Nonlinearly Separable Data

x1 x2 y

0 0 -1

1 0 1

0 1 1

1 1 -1

21 xxy =
XOR Data

For nonlinearly separable problems, perceptron learning 
algorithm will fail because no linear hyperplane can 
separate the data perfectly 



Multi-layer Neural Network
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• More than one hidden layer of 

computing nodes

• Every node in a hidden layer 

operates on activations from 

preceding layer and transmits 

activations forward to nodes of 

next layer

• Also referred to as 

“feedforward neural networks”



Multi-layer Neural Network

• Multi-layer neural networks with at least one hidden layer 

can solve any type of classification task involving 

nonlinear decision surfaces
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Multi-Layer Network Architecture with 

Many Hidden Layers

Activation value at 

node i at layer l

�
�

Activation 

Function Linear Predictor



Why Multiple Hidden Layers?
• Activations at hidden layers can be viewed as features 

extracted as functions of inputs

• Every hidden layer represents a level of abstraction

– Complex features are compositions of simpler features

• Number of layers is known as depth of ANN

– Deeper networks express complex hierarchy of features
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Neural Networks in Detail

Definition:

• NN is a directed graph F=<V,E> with vertices 
V={1,2,…,n} and edges E={<i,j> | 1  i,j  n}, with the 
following restrictions:
– V is partitioned into a set of input nodes, VI, hidden nodes, VH, 

and output nodes, VO.

– The vertices are also partitioned into layers. There can be more 
than one hidden layers. 

– Any edge <i,j> must have node i in layer h-1 and node j in layer 
h. (Note: In some advanced NNs, it is possible to have the edges 
connect nodes at arbitrary layers.)

– Edge <i,j> is labeled with a numeric value wij.

– Node i is labeled with a function fi.
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NN Example
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NN Activation Functions

• Sometimes called processing element function, firing 

rule.

• Functions associated with nodes in graph, using sets of 

inputs and weights. Usually in the form of sum of 

products:

• Output may be in range [-1,1] (bipolar) or [0,1] (unipolar)

(optional) input bias is 
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NN Activation (Transfer)Functions
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NN Activation Functions (cont.)

Linear Step/Threshold Ramp

Sigmoid Hyperbolic tangent Gaussian
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NN Model

• A neural network model is a computational model 

consisting of three parts:

– Neural Network graph 

– Learning algorithm that indicates how learning takes place.

– Recall techniques that determine how information is obtained 

from the network. 

•  We will look at propagation as a recall technique.
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Classification Using Neural 

Networks

• Typical NN structure for classification:

– One output node per class

– Output value is class membership function value

• Supervised learning 

– For each tuple in training set, propagate it through NN.  

– Adjust weights on edges to improve future classification. 

• Algorithms: 

– Propagation (recall), 

– Backpropagation (learning) , 

– Gradient Descent (technique to modify the weights in the graph)
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Propagation

Tuple Input

Output 
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NN Propagation Algorithm
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Example Propagation

© Prentie Hall
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NN Learning

• Propagate input values through graph.

• Compare output to desired output.

• Adjust weights in graph accordingly.

– Backpropagation – adjust the weights of each edge, starting 

backward from the edges that connect the output-hidden layer.
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NN Supervised Learning
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Backpropagation

Error
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NN Supervised Learning

39

• Training the nets begins with assigning each arc a small random 

positive weight.

• Feed training examples into the net, one by one.  (Each training 

example is marked with the desired output.)

• Compute the actual output for each example by feeding each 

attribute value into the relevant node, multiplying by the appropriate 

arc weights, summing weighted inputs, and applying transfer 

functions to obtain outputs at each level.

• Compare actual output at final output level to desired output for each 

example.  (This is called ‘supervised’ learning as the learning method 

can compare actual outputs with desired outputs.)

• Adjust weights by small fraction so as to minimize the error.  Error 

may be the simple squared difference between actual and desired 

output, or some other more complex error function.

• Continue feeding examples into net and adjusting weights (usually 

feeding the training set multiple times).  
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Supervised Learning

• Possible error values assuming output from node i is yi but should be di:

• The mean squared error (MSE) can be used to find the error. 

• Change weights on arcs based on estimated error
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Backpropagation Algorithm

MSE
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Gradient Descent Algorithm
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Back-propagation

43

• Back-propagation is the process of adjusting weights 

to minimize the output error.  The technique used is 

gradient descent: differentiate the transfer functions and, 

for each weight, decide whether to add or subtract a little 

in order to reduce the total error.

Assume we can adjust two weights 

(w1 and w2).  The surface on the left is 

an example of how the error may vary 

as a result of different combinations 

of these weights.

Notice that the direction (positive or 

negative) and steepness of the slopes 

can be obtained using partial 

derivatives of the error with respect to 

w1 and w2 
Source: Dhar and Stein
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Gradient Descent

• The basic idea of gradient descent is to find the set of weights that

minimizes MSE.

• The derivative of E gives the slope (or gradient) of the error fuction for

one weight.

• We wish to find the weight where this slope is zero.

• The derivate finds the direction that reduces the error the most.

• The delta is added to the weight.

• is refered to as the learing rate (or parameter). This value

determines how fast the algorithm learns



March 20, 2025 Data Mining: Concepts 

and Techniques
45

Gradient Descent
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Output Layer Learning
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Hidden Layer Learning
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Problems
Rate of Gradient Descent too Fast

• Picture the weight-to-error graph as a surface with hills (high errors) and 

valleys (low errors).

• If the rate of gradient descent (i.e. learning rate) is too fast (i.e. weights are 

adjusted too quickly) then:

• the net may miss a local minimum 

as it jumps into another valley with 

a higher minimum error.

• the net may bounce 

around within a given valley, 

without settling down 

(converging) to a minimum.

(See figure alongside). Some

nets use an adjustment called

the ‘momentum’ to promote

uni-directional movement in

weights and prevent high-

frequency oscillation around 

a minimum. Source: Dhar and Stein



49

Problems

Rate of Gradient Descent too Slow

• If the rate of gradient descent is too slow:

• the net may take a very long time to train

• the net may get stuck at a local minimum as it is unable to jump 

out of a valley and find a global minimum (illustrated below).

error E

weight w



Data Mining: Concepts 

and Techniques
50

Problems

Overtraining

50

• If you let a neural net run for too long, it can memorize the training 

data, meaning it doesn’t generalize well to new data.

• The usual resolution to this is to continually test the performance of 

the net against hold-out data (test data) while it is being trained.  

Training is stopped when the accuracy on the test set starts 

decreasing markedly.

Source: Dhar and Stein
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Adjustable Parameters

You can adjust a number of parameters when producing 

neural nets:

• number of hidden layers (usually, two is sufficient)

• number of hidden nodes

• transfer functions for each node

• rate of learning (weight adjustment)

• mode of weight adjustment (e.g. gradient descent 

versus genetic algorithms)

• number of input nodes: e.g. by selecting a sub-set of 

attributes which is more predictive.  Remember, there 

is one input node for each chosen attribute.
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Steps in Solving Classification 

Problems
1. Determine the number of output nodes, input nodes 

which relate to number of classes and attributes of the 

problem domain respectively. Performed by a domain 

expert.

2. Determine NN configurations: the number of hidden 

layers, the number of hidden nodes, weights, functions. 

This steps is performed by a technical expert.

3. Train the network by propagating the training data 

through the network. Evaluate the output and adjust the 

weights as necessary.

4. Classify the queries using the trained network.



Design Issues in ANN

• Number of nodes in input layer 

– One input node per binary/continuous attribute

– k or log2 k nodes for each categorical attribute with k values

• Number of nodes in output layer

– One output for binary class problem

– k or log2 k nodes for k-class problem

• Number of hidden layers and nodes per layer

• Initial weights and biases

• Learning rate, max. number of epochs, mini-batch size 

for mini-batch SGD, …
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NN Issues
• Number of source nodes (attributes): Which attributes 

should be used in classifier?

• Number of hidden layers and hidden nodes:

–  For simple problems, 1 (or 0) hidden layer with few nodes is 

fine.

–  For more complicated problems, more nodes and/or layers may 

be needed.

–  Depend on activation functions, problem domain, training 

algorithm.

• Training data: Similar to decision tree, too few → 

inaccurate classifier, too many → overfitting.

• Number of output nodes (sinks): Usually, the number of 

classes, but can be fewer. E.g. two classes with one 

output node, the class assignment is based on the sign 

of the output.
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NN Issues (cont.)

• Interconnections: In the simplest case, connect to all 

nodes in the next level.

• Weights: Assign small random number as initial weights.

• Activation functions: Sigmoidals are commonly used 

because they are smooth functions (required by 

backpropagation algorithm)

• Learning technique: Most common approach is 

backpropagation.

• Stopping criteria: The learning may stop when all the 

training tuples have propagated through the network or 

when it reaches the time limit or a specific error rate.
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NN: Techniques for Backpropagation

• Activation function: There are many desirable properties for 

an activation function.

– It must be a continuous function, that is, its derivative is defined 

throughout the domain of the function.  This is a requirement for the 

backpropagation algorithm.

– Its derivative should be continuous, that is, the function is smooth. 

Backpropagation can work with piecewise linear activation function 

(ramp function), but the process is more complicated.

– It must be a nonlinear function. Otherwise, the expression power of 

a 3 layer network is no more than that of a 2 layer network.

– It should saturate, that is, have some upper and lower bounds. This 

property is particularly desirable if the output of the network 

represent a probability value.

– It should be monotonic, the sign of the derivative is the same 

throughout the domain of the function.
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NN: Techniques for Backpropagation 

(cont.)
• Sigmoidal function has all of the desirable properties.

• Parameters for sigmoidal: Sigmoidal functions in the 

form of hyperbolic tangent is good.

– Function centered on zero

– Has antisymmetric property f(-net) = -f(net)

– The learning rate is faster.

• Number of hidden units indicates the expressive power 

of the network. 

– Too many hidden units → the complicated decision boundaries, 

small error rate on training set, but may lead to overfitting.

– Too few hidden units → the number of parameters for defining 

decision boundary is too restricted, high error rate on training 

set.
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NN: Techniques for Backpropagation 

(cont.)
• Initial weights: Goal is to have uniform learning rate for 

all classes.

– Must not be 0

– Chosen from a uniform distribution –w’ < w < +w’, should be 

small enough not to saturate the activation function and should 

be large enough to be outside the (almost) linear section of 

activation function (the center part of sigmoidal function).

• Learning rate,  : Again, it should be big enough so that 

the learning process makes some progress, but small 

enough so that it does not skip over the solution.

– The optimal rate is the one that reaches the local minimum in 

one step: 1

2

2 −







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
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w
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NN: Techniques for Backpropagation (cont.)

• Momentum: Keep moving in the previous direction. 
Helpful when the learning process is at a plateau. Let  
be momentum fraction. The formula for updating the 
weight set is:

• Number of hidden layers: Even 3 layer NNs are sufficient 
to implement arbitrary function, some application may 
require more layers in order to have a faster learning 
rate.

• Stopped training: When to stop the training. Like most 
other methods, the network with excessive training 
becomes very specific to the training set and poorly 
handles general data.

)1()()1()()1( −+−+=+ mmmm bp wwww 
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NNs

Advantages of NNs

• More robust, provide higher classification power.

• Better at handling noisy data.

• The NNs can be improved even after the training phase.

• Can be parallelized.

Disadvantages of NNs

• Hard to understand the structure of NN.

• Hard to configure the network.

• Not straightforward to generate rules from NNs.

• Attributes have to be numeric.

• In training phase, it may fail to converge .

• Slow.



Characteristics of ANN

• Multilayer ANN are universal approximators but could 

suffer from overfitting if the network is too large

– Naturally represents a hierarchy of features at multiple levels of 

abstractions

• Gradient descent may converge to local minimum

• Model building is compute intensive, but testing is fast 

• Can handle redundant and irrelevant attributes because 

weights are automatically learnt for all attributes

• Sensitive to noise in training data

– This issue can be addressed by incorporating model complexity 

in the loss function

• Difficult to handle missing attributes



Deep Learning Trends

• Training deep neural networks (more than 5-10 layers) could only 

be possible in recent times with:

– Faster computing resources (GPU)

– Larger labeled training sets

• Algorithmic Improvements in Deep Learning

– Responsive activation functions (e.g., RELU)

– Regularization (e.g., Dropout)

– Supervised pre-training

– Unsupervised pre-training (auto-encoders)

• Specialized ANN Architectures: 

– Convolutional Neural Networks (for image data)

– Recurrent Neural Networks (for sequence data)

– Residual Networks (with skip connections)

• Generative Models: Generative Adversarial Networks


	Slide 1: Artificial Intelligence  for Medicine II 
	Slide 2: Artificail Neural Networks (ANN)
	Slide 3: Biological inspirations
	Slide 4: Biological neuron
	Slide 5: Artificial Neural Networks 
	Slide 6: What is a neuron? 
	Slide 7: What is a neuron ? - 1
	Slide 8: What is a neuron?
	Slide 9: What is a neuron?
	Slide 10: What is a neural network?
	Slide 11: Learning
	Slide 12: Applications of ANNs
	Slide 13: Artificial Neural Networks (ANN)
	Slide 14: Basic Architecture of Perceptron
	Slide 15: Perceptron Example
	Slide 16: Perceptron Example
	Slide 17: Perceptron Learning Rule
	Slide 18: Perceptron Learning Rule
	Slide 19: Example of Perceptron Learning
	Slide 20: Perceptron Learning
	Slide 21: Nonlinearly Separable Data
	Slide 22: Multi-layer Neural Network
	Slide 23: Multi-layer Neural Network
	Slide 24: Multi-Layer Network Architecture with Many Hidden Layers
	Slide 25: Why Multiple Hidden Layers?
	Slide 26: Neural Networks in Detail
	Slide 27: NN Example
	Slide 28: NN Activation Functions
	Slide 29: NN Activation (Transfer)Functions
	Slide 30: NN Activation Functions (cont.)
	Slide 31: NN Model
	Slide 32: Classification Using Neural Networks
	Slide 33: Propagation
	Slide 34: NN Propagation Algorithm
	Slide 35: Example Propagation
	Slide 36: NN Learning
	Slide 37: NN Supervised Learning
	Slide 38: Backpropagation
	Slide 39: NN Supervised Learning
	Slide 40: Supervised Learning
	Slide 41: Backpropagation Algorithm
	Slide 42: Gradient Descent Algorithm
	Slide 43: Back-propagation
	Slide 44: Gradient Descent
	Slide 45: Gradient Descent
	Slide 46: Output Layer Learning
	Slide 47: Hidden Layer Learning
	Slide 48: Problems Rate of Gradient Descent too Fast
	Slide 49: Problems Rate of Gradient Descent too Slow
	Slide 50: Problems Overtraining
	Slide 51: Adjustable Parameters
	Slide 52: Steps in Solving Classification Problems
	Slide 53: Design Issues in ANN
	Slide 54: NN Issues
	Slide 55: NN Issues (cont.)
	Slide 56: NN: Techniques for Backpropagation
	Slide 57: NN: Techniques for Backpropagation (cont.)
	Slide 58: NN: Techniques for Backpropagation (cont.)
	Slide 59: NN: Techniques for Backpropagation (cont.)
	Slide 60: NNs
	Slide 61: Characteristics of ANN
	Slide 62: Deep Learning Trends

