
Artificial Intelligence

for

Medicine II

Spring 2025

Lecture 61: Supervised Learning

Support Vector Machines (SVM)

(Many slides adapted from Bing Liu, Han, Kamber & Pei; Tan, Steinbach, 
Kumar and the web)

AI for Medicine II 1



2

• Classification:  

– predicts categorical class labels

• E.g., Personal homepage classification

– xi = (x1, x2, x3, …), yi = +1 or –1

– x1 : # of a word “homepage”

– x2 : # of a word “welcome”

• Mathematically

– x  X = n, y  Y = {+1, –1}

– We want a function f: X → Y 

Classification: A Mathematical Mapping
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Linear Classification

• Binary Classification 

problem

• The data above the red 

line belongs to class ‘x’

• The data below red line 

belongs to class ‘o’

• Examples: SVM, 

Perceptron, Probabilistic 

Classifiers
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Discriminative Classifiers

• Advantages

– prediction accuracy is generally high 

• As compared to Bayesian methods – in general

– robust, works when training examples contain errors

– fast evaluation of the learned target function

• Bayesian networks are normally slow 

• Criticism

– long training time

– difficult to understand the learned function (weights)

• Bayesian networks can be used easily for pattern discovery

– not easy to incorporate domain knowledge

• Easy in the form of priors on the data or distributions
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NN Perceptron & Winnow

• Vector: x, w

• Scalar: x, y, w

Input: {(x1, y1), …}

Output: classification function f(x)

 f(xi) > 0 for yi = +1

 f(xi) < 0 for yi = -1

f(x) => wx + b = 0

 or w1x1+w2x2+b = 0

x1

x2

• Perceptron: update W 

additively

• Winnow: update W 

multiplicatively
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SVM—Support Vector Machines

• A new classification method for both linear and nonlinear 

data

• It uses a nonlinear mapping to transform the original 

training data into a higher dimension

• With the new dimension, it searches for the linear optimal 

separating hyperplane (i.e., “decision boundary”)

• With an appropriate nonlinear mapping to a sufficiently 

high dimension, data from two classes can always be 

separated by a hyperplane

• SVM finds this hyperplane using support vectors 

(“essential” training tuples) and margins (defined by the 

support vectors)
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SVM—History and Applications

• Vapnik and colleagues (1992)—groundwork from Vapnik 

& Chervonenkis’ statistical learning theory in 1960s

• Features: training can be slow but accuracy is high owing 

to their ability to model complex nonlinear decision 

boundaries (margin maximization)

• Used both for classification and prediction

• Applications: 

– handwritten digit recognition, object recognition, 

speaker identification, benchmarking time-series 

prediction tests 
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SVM—General Philosophy

Support Vectors

Small Margin Large Margin
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SVM—Margins and Support Vectors
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SVM—When Data Is Linearly Separable

m

Let data D be (X1, y1), …, (X|D|, y|D|), where Xi is the set of training tuples 

associated with the class labels yi

There are infinite lines (hyperplanes) separating the two classes but we want to 

find the best one (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum 

marginal hyperplane (MMH)
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SVM—Linearly Separable

◼ A separating hyperplane can be written as

W ● X + b = 0

where W={w1, w2, …, wn} is a weight vector and b a scalar (bias)

◼ For 2-D it can be written as

w0 + w1 x1 + w2 x2 = 0

◼ The hyperplane defining the sides of the margin: 

H1: w0 + w1 x1 + w2 x2 ≥ 1    for yi = +1, and

H2: w0 + w1 x1 + w2 x2 ≤ – 1 for yi = –1

◼ Any training tuples that fall on hyperplanes H1 or H2 (i.e., the 

sides defining the margin) are support vectors

◼ This becomes a constrained (convex) quadratic optimization 

problem: Quadratic objective function and linear constraints → 

Quadratic Programming (QP) → Lagrangian multipliers



12

Why Is SVM Effective on High Dimensional Data?

◼ The complexity of trained classifier is characterized by the # of 

support vectors rather than the dimensionality of the data

◼ The support vectors are the essential or critical training examples —

they lie closest to the decision boundary (MMH)

◼ If all other training examples are removed and the training is 

repeated, the same separating hyperplane would be found

◼ The number of support vectors found can be used to compute an 

(upper) bound on the expected error rate of the SVM classifier, which 

is independent of the data dimensionality

◼ Thus, an SVM with a small number of support vectors can have good 

generalization, even when the dimensionality of the data is high



Support Vector Machines

• Find the hyperplane that optimizes both factors
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Nonlinear Support Vector Machines

• What if decision boundary is not linear?



Nonlinear Support Vector Machines

• Transform data into higher dimensional space

0)( =+• bxw


Decision boundary:
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SVM—Linearly Inseparable

◼ Transform the original input data into a higher dimensional 

space

◼ Search for a linear separating hyperplane in the new space

A1

A2
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SVM—Kernel functions

◼ Instead of computing the dot product on the transformed data tuples, 

it is mathematically equivalent to instead applying a kernel function 

K(Xi, Xj) to the original data, i.e., K(Xi, Xj) = Φ(Xi) Φ(Xj) 

◼ Typical Kernel Functions

◼ SVM can also be used for classifying multiple (> 2) classes and for 

regression analysis (with additional user parameters)



Learning Nonlinear SVM

• Advantages of using kernel:

– Don’t have to know the mapping function 

– Computing dot product (xi)• (xj) in the original space avoids 

curse of dimensionality

• Not all functions can be kernels

– Must make sure there is a corresponding  in some high-

dimensional space

– Mercer’s theorem 



Characteristics of SVM
• The learning problem is formulated as a convex optimization problem

– Efficient algorithms are available to find the global minima 

– Many of the other methods use greedy approaches and find locally 

optimal solutions

– High computational complexity for building the model

• Robust to noise

• Overfitting is handled by maximizing the margin of the decision 

boundary, 

• SVM can handle irrelevant and redundant attributes better than many 

other techniques

• The user needs to provide the type of kernel function and cost function

• Difficult to handle missing values
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SVM vs. Neural Network

• SVM 

– Relatively new concept

– Deterministic algorithm

– Nice Generalization 

properties

– Hard to learn – learned 

in batch mode using 

quadratic programming 

techniques

– Using kernels can learn 

very complex functions

• Neural Network

– Relatively old

– Nondeterministic 
algorithm

– Generalizes well but 
doesn’t have strong 
mathematical foundation

– Can easily be learned in 
incremental fashion

– To learn complex 
functions—use multilayer 
perceptron (not that 
trivial)
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