
Artificial Intelligence

for

Medicine II

Spring 2025

Lecture 62: Supervised Learning

ENSEMBLE LEARNING

(Many slides adapted from Bing Liu, Han, Kamber & Pei; Tan, Steinbach,
Kumar and the web)

AI for Medicine II 1

Ensemble Methods

• Construct a set of base classifiers learned from the training data

• Predict class label of test records by combining the predictions
made by multiple classifiers (e.g., by taking majority vote)

2

Example: Why Do Ensemble Methods Work?

3

Necessary Conditions for Ensemble

Methods

• Ensemble Methods work better than a single base classifier

if:

1. All base classifiers are independent of each other

2. All base classifiers perform better than random guessing

(error rate < 0.5 for binary classification)

4

Classification error for an

ensemble of 25 base classifiers,

assuming their errors are

uncorrelated.

Rationale for Ensemble Learning
• Ensemble Methods work best with unstable base

classifiers

– Classifiers that are sensitive to minor perturbations in

training set, due to high model complexity

– Examples: Unpruned decision trees, ANNs, …

5

The bias-variance problem

• The bias-variance problem is a fundamental issue in machine learning
and statistics, particularly in the context of supervised learning. It
involves finding the right balance between two types of errors that can
affect the performance of a model:

• Bias: This error occurs when a model makes overly simplistic
assumptions about the data, leading to underfitting. High bias means
the model is not flexible enough to capture the underlying patterns in
the data.

• Variance: This error happens when a model is too sensitive to small
fluctuations in the training data, leading to overfitting. High variance
means the model captures noise in the training data rather than the
actual patterns.

• The goal is to find a balance between bias and variance to achieve
optimal model performance. This is known as the bias-variance
tradeoff. A model with low bias and low variance is ideal, but in
practice, achieving this balance can be challenging.

6

Bias and Variance Error
• Error due to Bias: The error due to bias is taken as the

difference between the expected (or average) prediction of
our model and the correct value which we are trying to
predict.

• Of course, you only have one model so talking about expected or
average prediction values might seem a little strange. However,
imagine you could repeat the whole model building process more
than once: each time you gather new data and run a new analysis
creating a new model. Due to randomness in the underlying data sets,
the resulting models will have a range of predictions. Bias measures
how far off in general these models' predictions are from the correct
value.

• Error due to Variance: The error due to variance is taken as
the variability of a model prediction for a given data point.

• Again, imagine you can repeat the entire model building process
multiple times. The variance is how much the predictions for a given
point vary between different realizations of the model.

7

Bias-Variance Decomposition

• Analogous problem of reaching a target y by firing

projectiles from x (regression problem)

• For classification, the generalization error of model 𝑚

can be given by:

𝑔𝑒𝑛. 𝑒𝑟𝑟𝑜𝑟 𝑚 = 𝑐1 + 𝑏𝑖𝑎𝑠 𝑚 + 𝑐2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑚)

8Introduction to Data

Mining, 2nd Edition

Bias-Variance Trade-off and

Overfitting

• Ensemble methods try to reduce the variance of complex

models (with low bias) by aggregating responses of

multiple base classifiers

9

Underfitting

Overfitting

General Approach of Ensemble

Learning

10

Using majority vote or

weighted majority vote

(weighted according to their

accuracy or relevance)

Constructing Ensemble Classifiers

• By manipulating training set
– Example: bagging, boosting, random forests

• By manipulating input features
– Example: random forests

• By manipulating class labels
– Example: error-correcting output coding

• By manipulating learning algorithm
– Example: injecting randomness in the initial weights of ANN

11

Bagging (Bootstrap AGGregatING)

• Bootstrap sampling: sampling with replacement

• Build classifier on each bootstrap sample

• Probability of a training instance being selected in a

bootstrap sample is:

➢1 – (1 - 1/n)n (n: number of training instances)

➢~0.632 when n is large

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

12

Bagging Algorithm

13

Bagging Example

• Consider 1-dimensional data set:

• Classifier is a decision stump (decision tree of size 1)

– Decision rule: x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False

14

Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

15

Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.7  y = 1

x > 0.7  y = 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.3  y = 1

x > 0.3  y = -1

x <= 0.35  y = 1

x > 0.35  y = -1

16

Bagging Example

Bagging Round 6:

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:

x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1

y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:

x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:

x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:

x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9

y 1 1 1 1 1 1 1 1 1 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.05  y = 1

x > 0.05  y = 1

17

Bagging Example

• Summary of Trained Decision Stumps:

Round Split Point Left Class Right Class

1 0.35 1 -1

2 0.7 1 1

3 0.35 1 -1

4 0.3 1 -1

5 0.35 1 -1

6 0.75 -1 1

7 0.75 -1 1

8 0.75 -1 1

9 0.75 -1 1

10 0.05 1 1

18

Bagging Example
• Use majority vote (sign of sum of predictions) to

determine class of ensemble classifier

• Bagging can also increase the complexity (representation

capacity) of simple classifiers such as decision stumps

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 1 1 1 -1 -1 -1 -1 -1 -1 -1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

4 1 1 1 -1 -1 -1 -1 -1 -1 -1

5 1 1 1 -1 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1 -1 1 1 1

7 -1 -1 -1 -1 -1 -1 -1 1 1 1

8 -1 -1 -1 -1 -1 -1 -1 1 1 1

9 -1 -1 -1 -1 -1 -1 -1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted

Class

19

Boosting

• An iterative procedure to adaptively change distribution

of training data by focusing more on previously

misclassified records

– Initially, all N records are assigned equal weights (for being

selected for training)

– Unlike bagging, weights may change at the end of each boosting

round

20

Boosting

• Records that are wrongly classified will have their

weights increased in the next round

• Records that are classified correctly will have their

weights decreased in the next round

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more

likely to be chosen again in subsequent rounds

21

AdaBoost

22

AdaBoost (short for Adaptive Boosting) is a machine learning meta-algorithm

developed by Yoav Freund and Robert Schapire in 1995. It isused to improve

the performance of other learning algorithms by combining multiple weak

learners into a strong classifier.

Here's how AdaBoost works:

1.Initialization: Start with equal weights for all training samples.

2.Training: Train a weak learner (e.g., a decision stump) on the weighted training

data.

3.Weight Update: Increase the weights of misclassified samples so that the next

weak learner focuses more on these difficult cases.

4.Combination: Combine the outputs of all weak learners into a final strong

classifier, typically using a weighted sum.

AdaBoost is adaptive because it adjusts the weights of the training samples based

on the errors of previous learners. This process helps the algorithm to focus on

harder-to-classify examples.

AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate of a base classifier:

• Importance of a classifier:








 −
=

i

i
i






1
ln

2

1

23

AdaBoost Algorithm

• Weight update:

• If any intermediate rounds produce error rate higher than

50%, the weights are reverted back to 1/n and the

resampling procedure is repeated

• Classification:

24

AdaBoost Algorithm

25

AdaBoost Example

• Consider 1-dimensional data set:

• Classifier is a decision stump

– Decision rule: x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False

26

AdaBoost Example

• Training sets for the first 3 boosting rounds:

• Summary:

Boosting Round 1:

x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:

x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Round Split Point Left Class Right Class alpha

1 0.75 -1 1 1.738

2 0.05 1 1 2.7784

3 0.3 1 -1 4.1195

27

AdaBoost Example

• Weights

• Classification

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 -1 -1 -1 -1 -1 -1 -1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted

Class

28

Random Forest Algorithm

• Construct an ensemble

of decision trees by

manipulating training set

as well as features

– Use bootstrap sample to

train every decision tree

(similar to Bagging)

– Use the following tree

induction algorithm:

• At every internal node of

decision tree, randomly

sample p attributes for

selecting split criterion

• Repeat this procedure

until all leaves are pure

(unpruned tree)
29

Characteristics of Random Forest

30

Gradient Boosting
• Constructs a series of models

– Models can be any predictive model that has a differentiable loss

function

31

Gradient Boosting

32

Gradient boosting is a powerful machine learning technique used to

create predictive models. It works by combining multiple weak

learners, typically decision trees, into a single strong learner. Here are

some key points about gradient boosting:

1.Boosting Method: Gradient boosting is a type of boosting method

that iteratively improves the model by minimizing a loss function.

2.Weak Learners: It uses weak learners, which are models that

perform slightly better than random guessing. Decision trees are

commonly used as weak learners.

3.Applications: Gradient boosting can be applied to various tasks

such as regression, classification, ranking, and survival analysis.

4.Libraries: Popular libraries for implementing gradient boosting

include XGBoost and LightGBM.

Implementations of various boosted algorithms are available in

Python, R, Matlab, and more.

	Slayt 1: Artificial Intelligence for Medicine II
	Slayt 2: Ensemble Methods
	Slayt 3: Example: Why Do Ensemble Methods Work?
	Slayt 4: Necessary Conditions for Ensemble Methods
	Slayt 5: Rationale for Ensemble Learning
	Slayt 6: The bias-variance problem
	Slayt 7: Bias and Variance Error
	Slayt 8: Bias-Variance Decomposition
	Slayt 9: Bias-Variance Trade-off and Overfitting
	Slayt 10: General Approach of Ensemble Learning
	Slayt 11: Constructing Ensemble Classifiers
	Slayt 12: Bagging (Bootstrap AGGregatING)
	Slayt 13: Bagging Algorithm
	Slayt 14: Bagging Example
	Slayt 15: Bagging Example
	Slayt 16: Bagging Example
	Slayt 17: Bagging Example
	Slayt 18: Bagging Example
	Slayt 19: Bagging Example
	Slayt 20: Boosting
	Slayt 21: Boosting
	Slayt 22: AdaBoost
	Slayt 23: AdaBoost
	Slayt 24: AdaBoost Algorithm
	Slayt 25: AdaBoost Algorithm
	Slayt 26: AdaBoost Example
	Slayt 27: AdaBoost Example
	Slayt 28: AdaBoost Example
	Slayt 29: Random Forest Algorithm
	Slayt 30: Characteristics of Random Forest
	Slayt 31: Gradient Boosting
	Slayt 32: Gradient Boosting

