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Ensemble Methods

• Construct a set of base classifiers learned from the training data

• Predict class label of test records by combining the predictions 
made by multiple classifiers (e.g., by taking majority vote)
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Example: Why Do Ensemble Methods Work?
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Necessary Conditions for Ensemble 

Methods

• Ensemble Methods work better than a single base classifier 

if:

1. All base classifiers are independent of each other

2. All base classifiers perform better than random guessing 

(error rate < 0.5 for binary classification)
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Classification error for an 

ensemble of 25 base classifiers, 

assuming their errors are 

uncorrelated. 



Rationale for Ensemble Learning
• Ensemble Methods work best with unstable base 

classifiers

– Classifiers that are sensitive to minor perturbations in 

training set, due to high model complexity

– Examples: Unpruned decision trees, ANNs, …
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The bias-variance problem

• The bias-variance problem is a fundamental issue in machine learning 
and statistics, particularly in the context of supervised learning. It 
involves finding the right balance between two types of errors that can 
affect the performance of a model:

• Bias: This error occurs when a model makes overly simplistic 
assumptions about the data, leading to underfitting. High bias means 
the model is not flexible enough to capture the underlying patterns in 
the data.

• Variance: This error happens when a model is too sensitive to small 
fluctuations in the training data, leading to overfitting. High variance 
means the model captures noise in the training data rather than the 
actual patterns.

• The goal is to find a balance between bias and variance to achieve 
optimal model performance. This is known as the bias-variance 
tradeoff. A model with low bias and low variance is ideal, but in 
practice, achieving this balance can be challenging.
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Bias and Variance Error
• Error due to Bias: The error due to bias is taken as the 

difference between the expected (or average) prediction of 
our model and the correct value which we are trying to 
predict.

•  Of course, you only have one model so talking about expected or 
average prediction values might seem a little strange. However, 
imagine you could repeat the whole model building process more 
than once: each time you gather new data and run a new analysis 
creating a new model. Due to randomness in the underlying data sets, 
the resulting models will have a range of predictions. Bias measures 
how far off in general these models' predictions are from the correct 
value.

• Error due to Variance: The error due to variance is taken as 
the variability of a model prediction for a given data point. 

• Again, imagine you can repeat the entire model building process 
multiple times. The variance is how much the predictions for a given 
point vary between different realizations of the model.

7



Bias-Variance Decomposition

• Analogous problem of reaching a target y by firing 

projectiles from x (regression problem)

• For classification, the generalization error of model 𝑚 

can be given by:

𝑔𝑒𝑛. 𝑒𝑟𝑟𝑜𝑟 𝑚 = 𝑐1 + 𝑏𝑖𝑎𝑠 𝑚 + 𝑐2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑚)

8Introduction to Data 

Mining, 2nd Edition



Bias-Variance Trade-off and 

Overfitting 

• Ensemble methods try to reduce the variance of complex 

models (with low bias) by aggregating responses of 

multiple base classifiers
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Underfitting

Overfitting



General Approach of Ensemble 

Learning
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Using majority vote or 

weighted majority vote 

(weighted according to their 

accuracy or relevance)



Constructing Ensemble Classifiers

• By manipulating training set
– Example: bagging, boosting, random forests

• By manipulating input features
– Example: random forests

• By manipulating class labels
– Example: error-correcting output coding
 

• By manipulating learning algorithm
– Example: injecting randomness in the initial weights of  ANN
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Bagging (Bootstrap AGGregatING)

• Bootstrap sampling: sampling with replacement

• Build classifier on each bootstrap sample

• Probability of a training instance being selected in a 

bootstrap sample is:

➢1 – (1 - 1/n)n (n: number of training instances)

➢~0.632 when n is large 

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7
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Bagging Algorithm
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Bagging Example

• Consider 1-dimensional data set:

• Classifier is a decision stump (decision tree of size 1)

– Decision rule:  x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False
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Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1
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Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.7  y = 1

x > 0.7  y = 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.3  y = 1

x > 0.3  y = -1

x <= 0.35  y = 1

x > 0.35  y = -1
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Bagging Example

Bagging Round 6:

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:

x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1

y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:

x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:

x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:

x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9

y 1 1 1 1 1 1 1 1 1 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.05  y = 1

x > 0.05  y = 1
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Bagging Example

• Summary of Trained Decision Stumps:

Round Split Point Left Class Right Class

1 0.35 1 -1

2 0.7 1 1

3 0.35 1 -1

4 0.3 1 -1

5 0.35 1 -1

6 0.75 -1 1

7 0.75 -1 1

8 0.75 -1 1

9 0.75 -1 1

10 0.05 1 1
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Bagging Example
• Use majority vote (sign of sum of predictions) to 

determine class of ensemble classifier

• Bagging can also increase the complexity (representation 

capacity) of simple classifiers such as decision stumps

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 1 1 1 -1 -1 -1 -1 -1 -1 -1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

4 1 1 1 -1 -1 -1 -1 -1 -1 -1

5 1 1 1 -1 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1 -1 1 1 1

7 -1 -1 -1 -1 -1 -1 -1 1 1 1

8 -1 -1 -1 -1 -1 -1 -1 1 1 1

9 -1 -1 -1 -1 -1 -1 -1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Boosting

• An iterative procedure to adaptively change distribution 

of training data by focusing more on previously 

misclassified records

– Initially, all N records are assigned equal weights (for being 

selected for training)

– Unlike bagging, weights may change at the end of each boosting 

round
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Boosting

• Records that are wrongly classified will have their 

weights increased in the next round

• Records that are classified correctly will have their 

weights decreased in the next round

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more 

likely to be chosen again in subsequent rounds
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AdaBoost
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AdaBoost (short for Adaptive Boosting) is a machine learning meta-algorithm 

developed by Yoav Freund and Robert Schapire in 1995. It isused to improve 

the performance of other learning algorithms by combining multiple weak 

learners into a strong classifier.

Here's how AdaBoost works:

1.Initialization: Start with equal weights for all training samples. 

2.Training: Train a weak learner (e.g., a decision stump) on the weighted training 

data. 

3.Weight Update: Increase the weights of misclassified samples so that the next 

weak learner focuses more on these difficult cases. 

4.Combination: Combine the outputs of all weak learners into a final strong 

classifier, typically using a weighted sum.

AdaBoost is adaptive because it adjusts the weights of the training samples based 

on the errors of previous learners. This process helps the algorithm to focus on 

harder-to-classify examples.



AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate of a base classifier:

• Importance of a classifier: 
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AdaBoost Algorithm

• Weight update:

• If any intermediate rounds produce error rate higher than 

50%, the weights are reverted back to 1/n and the 

resampling procedure is repeated

• Classification:
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AdaBoost Algorithm
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AdaBoost Example

• Consider 1-dimensional data set:

• Classifier is a decision stump

– Decision rule:  x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False
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AdaBoost Example

• Training sets for the first 3 boosting rounds:

• Summary:

Boosting Round 1:

x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:

x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Round Split Point Left Class Right Class alpha

1 0.75 -1 1 1.738

2 0.05 1 1 2.7784

3 0.3 1 -1 4.1195
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AdaBoost Example

• Weights

• Classification

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 -1 -1 -1 -1 -1 -1 -1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Random Forest Algorithm

• Construct an ensemble 

of decision trees by 

manipulating training set 

as well as features

– Use bootstrap sample to 

train every decision tree 

(similar to Bagging)

– Use the following tree 

induction algorithm:

•  At every internal node of 

decision tree, randomly 

sample p attributes for 

selecting split criterion

•  Repeat this procedure 

until all leaves are pure 

(unpruned tree)
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Characteristics of Random Forest
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Gradient Boosting
• Constructs a series of models 

– Models can be any predictive model that has a differentiable loss 

function
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Gradient Boosting
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Gradient boosting is a powerful machine learning technique used to 

create predictive models. It works by combining multiple weak 

learners, typically decision trees, into a single strong learner. Here are 

some key points about gradient boosting:

1.Boosting Method: Gradient boosting is a type of boosting method 

that iteratively improves the model by minimizing a loss function.

2.Weak Learners: It uses weak learners, which are models that 

perform slightly better than random guessing. Decision trees are 

commonly used as weak learners.

3.Applications: Gradient boosting can be applied to various tasks 

such as regression, classification, ranking, and survival analysis.

4.Libraries: Popular libraries for implementing gradient boosting 

include XGBoost and LightGBM.

Implementations of various boosted algorithms are available in 

Python, R, Matlab, and more.
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