Artificial Intelligence for Medicine II

Spring 2025

Lecture 81: Unsupervised Learning Clustering

(Many slides adapted from Bing Liu, Han, Kamber & Pei; Tan, Steinbach, Kumar and the web)

What is Cluster Analysis?

 Given a set of objects, place them in groups such that the objects in a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

	Discovered Clusters	Industry Group
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, Computer-Assoc-DOWN,Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Summarization

Reduce the size of large data sets

Clustering Problem Formally

- Given
 - a database D={t₁,t₂,...,t_n} of tuples and
 - an integer value k,
- the Clustering Problem is to define
 - a mapping f:D → $\{1,..,k\}$ where each t_i is assigned to one cluster K_i , 1<=j<=k.
- A cluster, K_j, contains precisely those tuples mapped to it.
- Unlike classification problem, clusters are not known a priori.

General Applications of Clustering

- Pattern Recognition
- Spatial Data Analysis
 - create thematic maps in GIS by clustering feature spaces
 - detect spatial clusters and explain them in spatial data mining
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns
- Medicine
 - Patient Stratification (Group patients with similar chatracteristics)
 - Heathcare data analysis
 - Medical Imaging (segmentation and detecting anomalies)

Examples of Clustering Applications

- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use:</u> Identification of areas of similar land use in an earth observation database
- Insurance: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type, value, and geographical location
- Earth-quake studies: Observed earth quake epicenters should be clustered along continent faults

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, PCA, classification, and association analysis
- Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors
 - Localizing search to one or a small number of clusters
- Outlier detection
 - Outliers are often viewed as those "far away" from any cluster

Clustering Issues

- The appropriate number of clusters for each data set.
- How to define similarity or the criterion used to group data together.
- Outlier handling is difficult. Should they be a part of an existing cluster, or another cluster?
- Dynamic database, how to update the clusters when there are changes in data.
- The semantic meaning of each cluster. (Contrast with classes in classification process, each has a definitive meaning.)
- Type of attributes that the clustering algorithm can handle.
- Scalability to large datasets.

Notion of a cluster is ambigious

Different types of clusters

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: <u>cohesive</u> within clusters
 - low <u>inter-class</u> similarity: <u>distinctive</u> between clusters
- The <u>quality</u> of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the <u>hidden</u> patterns

Requirements and Challenges

- Scalability
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Measure the Quality of Clustering

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for interval-scaled, boolean, categorical, ordinal ratio, and vector variables
 - Weights should be associated with different variables based on applications and data semantics
- Quality of clustering:
 - There is usually a separate "quality" function that measures the "goodness" of a cluster.
 - It is hard to define "similar enough" or "good enough"
 - The answer is typically highly subjective

Similarity and Dissimilarity Metric

Similarity

- Numerical measure of how alike two data objects are.
- Is higher when objects are more alike.
- Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different two data objects are.
 - Is lower when objects are more alike.
 - Minimum dissimilarity is often 0.
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Similarity and Dissimilarity Between Objects

- <u>Distances</u> are normally used to measure the <u>similarity</u> or <u>dissimilarity</u> between two data objects
- Some popular ones include: Minkowski distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and q is a positive integer

• If q = 1, d is Manhattan distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

Similarity and Dissimilarity Between Objects (Cont.)

• If q = 2, d is Euclidean distance:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- Properties
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$
- Also one can use weighted distance, parametric Pearson product moment correlation, or other disimilarity measures.

Euclidean Distance

Euclidean Distance

point	X	y
p1	0	2
р2	2	0
р3	3	1
р4	5	1

	p1	p2	р3	p4
р1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

Source : S. Ranka

Other Similarity and Dissimilarity Metrics Between Objects

Dice:
$$sim(t_{i}, t_{j}) = \frac{2\sum_{h=1}^{k} t_{ih} t_{jh}}{\sum_{h=1}^{k} t_{ih}^{2} + \sum_{h=1}^{k} t_{jh}^{2}}$$

Jaccard: $sim(t_{i}, t_{j}) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\sum_{h=1}^{k} t_{ih}^{2} + \sum_{h=1}^{k} t_{jh}^{2} - \sum_{h=1}^{k} t_{ih} t_{jh}}$

Cosine: $sim(t_{i}, t_{j}) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\sqrt{\sum_{h=1}^{k} t_{ih}^{2} \sum_{h=1}^{k} t_{jh}^{2}}}$

Overlap: $sim(t_{i}, t_{j}) = \frac{\sum_{h=1}^{k} t_{ih} t_{jh}}{\min(\sum_{h=1}^{k} t_{ih}^{2}, \sum_{h=1}^{k} t_{jh}^{2})}$
 $t_{i} = \langle t_{i1}, \dots, t_{ik} \rangle, t_{i} = \langle t_{i1}, \dots, t_{ik} \rangle$

Data Structures

Data matrix

- This represents n objects, such as persons, with p variables (also called measurements or attributes), such as age, height, gender, race, and so on.
- Called "two modes": since rows and columns represent different entities

Proximity (Similarity/Dissimilarity) matrix

- Stores a collection of proximities that are available for all pairs of n objects. (n by n matrix)
- Called "one mode": since it reprsents the same entity
- d(i,j) is the measured difference or dissimilarity between objects i and j.

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1p} \\ \dots & \dots & \dots & \dots \\ x_{i1} & \dots & x_{if} & \dots & x_{ip} \\ \dots & \dots & \dots & \dots \\ x_{n1} & \dots & x_{nf} & \dots & x_{np} \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & 0 \end{bmatrix}$$

Considerations for Cluster Analysis

- Partitioning criteria
 - Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs.
 non-exclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidian, road network, vector) vs.
 connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. subspaces (often in high-dimensional clustering)

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
 - Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters)
 - Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Original Points

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other Distinctions Between Sets of Clusters

- Exclusive versus non-exclusive
 - In non-exclusive clusterings, points may belong to multiple clusters.
 - Can belong to multiple classes or could be 'border' points
 - Fuzzy clustering (one type of non-exclusive)
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights must sum to 1
 - Probabilistic clustering has similar characteristics
- Partial versus complete
 - In some cases, we only want to cluster some of the data

Types of Clusters

- Well-separated clusters
- Prototype-based clusters
- Contiguity-based clusters
- Density-based clusters
- Described by an Objective Function

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Prototype-Based

Prototype-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the prototype or "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

4 center-based clusters

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
 - Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Objective Function

- Clusters Defined by an Objective Function
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
 - A variation of the global objective function approach is to fit the data to a parameterized model.
 - Parameters for the model are determined from the data.
 - Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - Central to clustering
 - Depends on data and application
- Data characteristics that affect proximity and/or density are
 - Dimensionality
 - Sparseness
 - Attribute type
 - Special relationships in the data
 - For example, autocorrelation
 - Distribution of the data
- Noise and Outliers
 - Often interfere with the operation of the clustering algorithm
- Clusters of differing sizes, densities, and shapes

Clustering Algorithms

- K-means and its variants (Partitional algorithms)
- Hierarchical clustering
- Density-based clustering

Partitioning Methods (or algorithms)

- A partitioning method constructs k clusters. It classifies the data into k groups, which together satisfy the requirements of a partition. Each group must contain at least one object.
- Each object must belong to exactly one group.
- k <= n where k is the number of clusters with n objects.

Partitional algorithms

- Partitional algorithms generate a single partition (or clustering) of the data.
- Hierarchical clusterings are widely used in biological, social science where the representations in taxonomy style are preferred.
- Partitional clusterings are frequently used in engineering, they offer more compact representation.
- Partitional algorithms divide data into k clusters. The value of k may or may not be specified.
- Criteria, such as squared error, are used to evaluate the goodness of each proposed clustering.
- Partitioning method: Partitioning a database **D** of **n** objects into a set of **k** clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)

Squared error =
$$\sum_{j=1}^{k} \sum_{t_{K_{i}i} \in K_{j}} dist(C_{K_{j}}, t_{K_{j}i})^{2}$$

The choice of criterion function is problem dependent.

Partitional algorithms (cont.)

- Achieving global optimility in partition-based algorithms require the exhaustive enumaretion of all posibile partitions
- Evaluate every possible partition containing k clusters. Select the best partition according to the criterion function. (NP Hard)
- The number of possible partitions is enormous, even when k, n are relatively small.
- Let S(n,k) denote the number of partitions of n points into k clusters.

$$S(n,k) = \frac{1}{k!} \sum_{i=1}^{k} (-1)^{k-i} \binom{k}{i} (i)^{n}$$

• E.g. S(10,4) = 34105; S(19,4) = 11259666000.

Partition-based algorithms use heuristic methods such K-means, K-medoids, or a variation of them for clustering.

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database D
 of n objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids)
 (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

Cluster Parameters

Some characteristic values of the clusters:

Centroid=
$$C_K = \frac{\sum_{i=1}^{n} (t_{Ki})}{n}$$
 Radius = $R_K = \sqrt{\frac{\sum_{i=1}^{n} (t_{Ki} - C_K)^2}{n}}$
Diameter = $D_K = \sqrt{\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} (t_{Ki} - t_{Kj})^2}{n(n-1)}}$

- Centroid is the middle of the cluster. It is not necessary to be a data point. Let C_K denote centroid of cluster K.
- Radius: square root of average distance from any point of the cluster to its centroid.
- Diameter: square root of average mean squared distance between all pairs of points in the cluster
- Medoid is an actual item that is located at the central of the cluster. Let M_K denote medoid of cluster K.

Cluster Parameters

•The squared error for a cluster is the sum of the the squared Euclidean distances between each element in the cluster and the cluster centroid, $C_{\rm k}$

$$se_{K_i} = \sum_{j=1}^{m} ||t_{ij} - C_k||^2$$

 $se_K = \sum_{j=1}^{k} se_{K_j}$

K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

The *K-Means* Clustering Method in Detail

- **K-means** clustering: First, pick a numeric attribute to cluster on. Then...
 - Step 1: Start with K random cluster centers.
 - **Step 2**: Assign each new example to the cluster with the closest center (i.e. closest mean). After all examples have been assigned, calculate the new center (i.e. mean) for each cluster.
 - **Step 3**: Repeat Step 2 until there is convergence. The algorithm may stop when:
 - only a small number of examples are assigned to different clusters, or
 - a fixed number of iterations have been executed,
 - The centroids don't change or
 - the difference between successive squared errors is below a certain threshold (so called 'minimum-squared-error clustering)'. The 'squared error' is the Euclidian distance between each element in the cluster and the cluster center.

The K-Means Clustering Method

K-Means Example

- Given: {2,4,10,12,3,20,30,11,25}, k=2
- Randomly assign means: m₁=3,m₂=4
- $K_1=\{2,3\}, K_2=\{4,10,12,20,30,11,25\}, m_1=2.5, m_2=16$
- $K_1 = \{2,3,4\}, K_2 = \{10,12,20,30,11,25\}, m_1 = 3, m_2 = 18$
- $K_1 = \{2,3,4,10\}, K_2 = \{12,20,30,11,25\},$ $m_1 = 4.75, m_2 = 19.6$
- $K_1 = \{2,3,4,10,11,12\}, K_2 = \{20,30,25\}, m_1 = 7, m_2 = 25$
- Stop as the clusters with these means are the same.

Example of K-means Clustering

Example of K-means Clustering

K-means Clustering – Details

- Simple iterative algorithm.
 - Choose initial centroids;
 - repeat {assign each point to a nearest centroid; re-compute cluster centroids}
 - until centroids stop changing.
- Initial centroids are often chosen randomly.
 - Clusters produced can vary from one run to another
- The centroid is (typically) the mean of the points in the cluster, but other definitions are possible.
- K-means will converge for common proximity measures with appropriately defined centroid.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

K-means Objective Function

- A common objective function (used with Euclidean distance measure) is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster center
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C_i and m_i is the centroid (mean) for cluster C_i
- SSE improves in each iteration of K-means until it reaches a local or global minima.

K-Means Clustering Problems

- Because k-means clustering techniques decide the number of clusters in advance, they are sensitive to outliers.
- Selection of initial centroids
- K-means works well for spherical clusters in small data sets, but poorly for complex-shaped clusters in large data sets.
- From the diagram below, you can see that, for this particular data set, using 3-means is better than using 2-means because the latter is excessively influenced by the outlier and fails to split the clusters well.
- Note that hierarchical, demographic, and neural clustering algorithms do not suffer from this drawback as they do not require you to specify in advance how many clusters to create.

Source: Adapted from Dunham 48

Two different K-means Clusterings

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Use some strategy to select the k initial centroids and then select among these initial centroids
 - Select most widely separated
 - K-means++ is a robust way of doing this selection
 - Use hierarchical clustering to determine initial centroids
- Bisecting K-means
 - Not as susceptible to initialization issues

K-means++

- This approach can be slower than random initialization, but very consistently produces better results in terms of SSE
 - The k-means++ algorithm guarantees an approximation ratio
 O(log k) in expectation, where k is the number of centers
- To select a set of initial centroids, C, perform the following
- 1. Select an initial point at random to be the first centroid
- 2. For k-1 steps
- For each of the N points, x_i , $1 \le i \le N$, find the minimum squared distance to the currently selected centroids, C_1 , ..., C_j , $1 \le j < k$, i.e., $\min_i d^2(C_j, x_i)$
- 4. Randomly select a new centroid by choosing a point with probability proportional to $\frac{\min\limits_{j} d^{2}(C_{j}, x_{i})}{\sum_{i} \min\limits_{j} d^{2}(C_{j}, x_{i})}$ is
- 5. End For

Other Variations of the K-Means Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes (Huang'98)
 - Replacing means of clusters with <u>modes</u>
 - Using new dissimilarity measures to deal with categorical objects
 - Using a <u>frequency</u>-based method to update modes of clusters
 - A mixture of categorical and numerical data: k-prototype method
- K-Medoids (Partitioning Around Medoids) Clustering Method
- Bisecting K-Means
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling
- Focusing + spatial data structure (Ester et al., 1995)

K-Medoids (Partitioning Around Medoids) Clustering Method

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the mean value of the object in a cluster
 as a reference point, medoids can be used, which is the most
 centrally located object in a cluster

Bisecting K-means

- Bisecting K-means algorithm
 - Variant of K-means that can produce a partitional or a hierarchical clustering
- 1: Initialize the list of clusters to contain the cluster containing all points.
- 2: repeat
- 3: Select a cluster from the list of clusters
- 4: for i = 1 to $number_of_iterations$ do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

CLUTO: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

Bisecting K-means Example

- 1.Initial Cluster: Start with all data points in one cluster.
- **2.Bisecting**: Split the cluster into two sub-clusters using k-means (k=2).
- **3.Selection**: Choose the cluster with the highest variance or largest size for further splitting.
- **4.Repeat**: Continue bisecting until the desired number of clusters is reached.

In medicine, In medicine, bisecting k-means has been applied to tasks like brain tumor detection using MRI images

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means has problems when the data contains outliers.
 - One possible solution is to remove outliers before clustering