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Hierarchical Clustering
• Produces a set of nested clusters organized as a

hierarchical tree.
• Can be visualized as a dendrogram
– Tree like diagram
– Records the sequences of merges or splits
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Dendrograms

• Dendrogram: a tree data structure 

which illustrates hierarchical 

clustering techniques.

• Each level shows clusters for that 

level.

– Leaf – individual clusters

– Root – one cluster

• A cluster at level i is the union of its 

children clusters at level i+1.

• each level is typically associated 

with a distance threshold: sub-

clusters of the clusters at that level 

were combined because they had a 

distance between them of less than 

the distance threshold.
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Dendrograms



How to Define Inter-Cluster Distance
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Inter-cluster distance (similarity) metrics

• Many hierarchical clustering algorithms require that the distance (or 

inter-cluster similarity) between clusters to be determined. 

• Let Ki, Kj be two clusters, i  Ki and j  Kj,,, there is a variety of 

distance metrics to calculate the distance between clusters

– Single link: Smallest distance between two points, one in Ki and the 

other in Kj : dist(Ki,Kj) = min(dist(i, j)).

– Complete link: Largest distance between two points, one in Ki and the 

other in Kj : dist(Ki,Kj) = max(dist(i, j)).

– Average link: Average distance between two points, one in Ki and the 

other in Kj : dist(Ki,Kj) = avg(dist(i, j)).

– Centroid: Distance between the centroid: dist(Ki,Kj) = dist(CKi,CKj).

– Medoid: Distance between the medoids: dist(Ki,Kj) = dist(MKi,MKj).
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Inter-cluster distance metrics (cont.)

single link

complete link

centroid

medoid

•Single link: Calculate the smallest distance between an element in one cluster and an 

element in the other cluster.

•Complete link (Farthest neighbor): Calculate the largest distance between an 

element in one cluster and an element in the other cluster.

•Average link: Calculate the average distance between each element in one cluster 

and all elements in the other cluster.

•Centroid: Calculate the distance between cluster centroids.

•Medoid:  Calculate the distance between cluster medoids.



MIN or Single Link 
• Proximity of two clusters is based on the two closest points 

in the different clusters

– Determined by one pair of points, i.e., by one link in the proximity 

graph

• Example:

Distance Matrix:



Hierarchical Clustering: MIN
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MAX or Complete Linkage

• Proximity of two clusters is based on the two most 

distant points in the different clusters

– Determined by all pairs of points in the two clusters

Distance Matrix:



Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Hierarchical Clustering

Two main types of algorithms:

– Agglomerative (bottom-up merging)

• Start with the points as individual clusters

• Merge clusters until only one is left

– Divisive (top-down splitting)

• Start with all the points as one cluster

• Split clusters until only singleton clusters remain

– Agglomerative is more popular

• Traditional hierarchical algorithms use a similarity or
distance matrix, and merge or split one cluster at a time
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• Bottom-up merging techniques are called 
agglomerative as they agglomerate (merge) 
smaller clusters into bigger ones.

• Typically, clusters are merged if the distance 
metric between the two clusters is less than a 
certain threshold.  

• The threshold increases at each stage of 
merging.

• A variety of distance metrics can be used to 
calculate the distance (inter-cluster similarity)  
between clusters

Agglomerative Clustering 
(Bottom-Up Merging)
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The sequence of graphs below show how a bottom-up merging techniques may 
proceed.  Each example starts off in its own cluster.  At each stage, we use the 
distance threshold to decide which clusters to merge, until eventually we have 

only one super-cluster. (We may also stop at some other termination condition - 
e.g. we may stop when we have less than a certain number of super-clusters.)

Stage 1: 5 clusters Stage 2: 3 clusters Stage 3: 1 cluster

A B C D E

Stage 2: Cluster 1 Stage 2: Cluster 2

Stage 3: Cluster 1

Stage 1: 

Cluster 5

Stage 1: 

Cluster 1

Stage 1: 

Cluster 2

Stage 1: 

Cluster 3

Stage 1: 

Cluster 4

Stage 2: 

Cluster 3

Merge Merge

Agglomerative Clustering (Bottom-Up Merging)

Source: Alan Abrahams



May 7, 2025 Data Mining: Concepts and 
Techniques 1515

The sequence of graphs below show how a top-down splitting techniques 
may proceed.  We start off with one super-cluster. At each stage, we decide 

where to split, until eventually we have reasonable sub-clusters.

Stage 1: 1 cluster Stage 2: 2 clusters

Stage 3: 3 clusters

A B C D E

Stage 2: Cluster 1 Stage 2: Cluster 2

Stage 1: Cluster 1

Stage 3: 

Cluster 1

Stage 3: 

Cluster 2

Stage 3: 

Cluster 3

Split Split

Divisive Clustering (Top-down Splitting)

Source: Alan Abrahams
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Agglomerative Algorithms

• Agglomerative algorithms start with each inidividual item 

in its own cluster and iterative merge clusters until all 

items belong in on cluster.

• Key operation is the computation of the proximity of two 

clusters.

• Different approaches to defining the distance between 

clusters distinguishes the different algorithms. 

– Single link

– Complete link (Farthest neighbor)

– Average link

– Centroid

– Medoid
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Agglomerative Algorithms

• In the algorithm given on the next slide:

– d: the threshold distance

– k: the number of clusters

– K: the set of clusters

• The procedure NewClusters determine how to form the
next level clusters from the previous level. This is where
the different types of agglomerative algorithms differ. 

• Different approaches to defining the distance between
clusters results in the different algorithms. 

– Single link

– Complete link (Farthest neighbor)

– Average link

– Centroid

– Medoid
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Agglomerative Algorithm
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Basic agglomerative algorithms

• Agglomerative algorithm using complete-link (max) technique

– Merged if the maximum distance is less than or equal to the
distance threshold.

– Clusters found using the complete link tend to be more compact
than the single link tehnique

– Tends to break large clusters.

– Less susceptible to noise and outliers.

• Agglomerative algorithm using average-link technique

– Merged if the average distance is less than or equal to the
distance threshold

– Compromise between Single and Complete Link.

– Need to use average connectivity for scalability since total 
connectivity favors large clusters.

– Less susceptible to noise and outliers.
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Agglomerative Clustering



Density-Based Clustering 

Methods

• Clustering based on density (local cluster criterion), 

such as density-connected points

• Major features:

– Discover clusters of arbitrary shape

– Handle noise

– One scan

– Need density parameters as termination condition

• Several interesting studies:

– DBSCAN: Ester, et al. (KDD’96)

– OPTICS: Ankerst, et al (SIGMOD’99).

– DENCLUE: Hinneburg & D. Keim  (KDD’98)

– CLIQUE: Agrawal, et al. (SIGMOD’98)



DBSCAN

• DBSCAN is a density-based algorithm.
– Density = number of points within a specified radius (Eps)

– A point is a core point if it has at least a specified number of 
points (MinPts) within Eps 

– These are points that are at the interior of a cluster

– Counts the point itself

– A border point is not a core point, but is in the neighborhood 
of a core point

– A noise point is any point that is not a core point or a border 
point 
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DBSCAN: Density Based Spatial Clustering of 

Applications with Noise

• Relies on a density-based notion of cluster:  A cluster is 

defined as a maximal set of density-connected points

• Discovers clusters of arbitrary shape in spatial databases 

with noise

Core

Border

Outlier

Eps = 1cm

MinPts = 5



DBSCAN: Core, Border and Noise Points

Original Points Point types: core, 

border and noise

Eps = 10, MinPts = 4



DBSCAN Algorithm

• Form clusters using core points, and assign border 

points to one of its neighboring clusters

1: Label all points as core, border, or noise points.

2: Eliminate noise points.

3: Put an edge between all core points within a distance Eps of each 

other.

4: Make each group of connected core points into a separate cluster.

5: Assign each border point to one of the clusters of its associated core 

points



When DBSCAN Works Well

Original Points Clusters (dark blue points indicate noise)

• Can handle clusters of different shapes and sizes

• Resistant to noise



Cluster Validity 

• For supervised classification we have a variety of measures to 
evaluate how good our model is
– Accuracy, precision, recall

• For cluster analysis, the analogous question is how to 
evaluate the “goodness” of the resulting clusters?

• But “clusters are in the eye of the beholder”! 
– In practice the clusters we find are defined by the clustering 

algorithm

• Then why do we want to evaluate them?
– To avoid finding patterns in noise
– To compare clustering algorithms
– To compare two sets of clusters
– To compare two clusters



Clusters found in Random Data
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• Numerical measures that are applied to judge various aspects 

of cluster validity, are classified into the following two types.

– Supervised: Used to measure the extent to which cluster labels 

match externally supplied class labels.
• Entropy 

• Often called external indices because they use information external to the data

– Unsupervised:  Used to measure the goodness of a clustering 

structure without respect to external information. 
• Sum of Squared Error (SSE)

• Often called internal indices because they only use information in the data

  

• You can use supervised or unsupervised measures to compare 

clusters or clusterings

Measures of Cluster Validity



• Cluster Cohesion: Measures how closely related are 

objects in a cluster

– Example: SSE

• Cluster Separation: Measure how distinct or well-

separated a cluster is from other clusters

• Example: Squared Error

– Cohesion is measured by the within cluster sum of squares (SSE)

– Separation is measured by the between cluster sum of squares

Where 𝐶𝑖 is the size of cluster i 

Unsupervised Measures: Cohesion and Separation

𝑆𝑆𝐸 = ෍

𝑖

෍

𝑥∈𝐶𝑖

𝑥 − 𝑚𝑖
2

𝑆𝑆𝐵 = ෍

𝑖

𝐶𝑖 𝑚 − 𝑚𝑖
2



Unsupervised Measures: Cohesion and Separation

• Example: SSE

– SSB + SSE = constant

1 2 3 4 5
 
m1 m2

m

K=2 clusters:

K=1 cluster: 𝑆𝑆𝐸 = 1 − 3 2 + 2 − 3 2 + 4 − 3 2 + 5 − 3 2 = 10

𝑆𝑆𝐵 = 4 × 3 − 3 2 = 0

𝑇𝑜𝑡𝑎𝑙 = 10 + 0 = 10

𝑆𝑆𝐸 = 1 − 1.5 2 + 2 − 1.5 2 + 4 − 4.5 2 + 5 − 4.5 2 = 1

𝑆𝑆𝐵 = 2 × 3 − 1.5 2 + 2 × 4.5 − 3 2 = 9

𝑇𝑜𝑡𝑎𝑙 = 1 + 9 = 10



• A proximity graph-based approach can also be used for 

cohesion and separation.

– Cluster cohesion is the sum of the weight of all links within a cluster.

– Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Unsupervised Measures: Cohesion and Separation

cohesion separation



• Silhouette coefficient combines ideas of both cohesion and separation, 

but for individual points, as well as clusters and clusterings.

• For an individual point, i

– Calculate a = average distance of i to the points in its cluster

– Calculate b = min (average distance of i to points in another cluster)

– The silhouette coefficient for a point is then given by 

s = (b – a) / max(a,b)   

– Value can vary between -1 and 1

– Typically ranges between 0 and 1. 

– The closer to 1 the better.

• Can calculate the average silhouette coefficient for a cluster or a 

clustering

Unsupervised Measures: Silhouette Coefficient

Distances used 

to calculate a

i

Distances used 

to calculate b



• Two matrices 
– Proximity Matrix

– Ideal Similarity Matrix

• One row and one column for each data point

• An entry is 1 if the associated pair of points belong to the same cluster

• An entry is 0 if the associated pair of points belongs to different clusters

• Compute the correlation between the two matrices
– Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

• High magnitude of correlation indicates that points that 

belong to the same cluster are close to each other. 

– Correlation may be positive or negative depending on whether 

the similarity matrix is a similarity or dissimilarity matrix

• Not a good measure for some density or contiguity based 

clusters.

Measuring Cluster Validity Via Correlation



Measuring Cluster Validity Via Correlation

• Correlation of ideal similarity and proximity matrices for 

the K-means clusterings of the following well-clustered 

data set. 
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Measuring Cluster Validity Via Correlation

• Correlation of ideal similarity and proximity matrices for 

the K-means clusterings of the following random data 

set. 
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Judging clustering quality visually using 

a similarity matrix

• A similarity matrix represents pairwise similarities between data points.

- Visualizing the Matrix
• The matrix is typically displayed as a heatmap, where colors indicate similarity 

levels.

• Well-defined clusters appear as blocks along the diagonal, showing high intra-
cluster similarity.

• If clusters are poorly separated, the heatmap may show blurred boundaries or 
scattered similarities.

- Interpretation
• Clear diagonal blocks → Strong clustering structure.

• Scattered similarities → Overlapping or weak clusters.

• Uniform color → No meaningful clustering.

- Applications
• Used in hierarchical clustering to validate dendrogram structures.

• Helps assess spectral clustering, where similarity matrices drive the clustering 
process.

• Useful in medical imaging and bioinformatics for pattern recognition.

37



• Order the similarity matrix with respect to cluster 

labels and inspect visually. 

Judging a Clustering Visually by its Similarity Matrix
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Judging a Clustering Visually by its Similarity Matrix

• Clusters in random data are not so crisp

DBSCAN
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Judging a Clustering Visually by its Similarity Matrix
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Determining the Correct Number of 

Clusters Using SSE curve

41

The Sum of Squared Errors (SSE) curve, often called the Elbow Method, is a 

popular technique for determining the optimal number of clusters in K-Means 

clustering. 

Here's how it works:

1. Compute SSE for Different Cluster Counts

•SSE measures the total squared distance between each data point and its 

assigned cluster centroid.

•As the number of clusters (K) increases, SSE decreases because clusters 

become more refined.

2. Plot the SSE Curve

•The SSE values are plotted against different values of K.

•The curve typically shows a sharp drop initially, then levels off.

3. Identify the "Elbow" Point

•The elbow is where the SSE curve bends, indicating the optimal number of 

clusters.

•Beyond this point, adding more clusters does not significantly reduce SSE, 

meaning additional clusters may not provide meaningful separation.



• SSE is good for comparing two clusterings or two clusters

• SSE can also be used to estimate the number of clusters

Determining the Correct Number of Clusters
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Determining the Correct Number of Clusters

• SSE curve for a more complicated data set
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SSE of clusters found using K-means



• Need a framework to interpret any measure. 
– For example, if our measure of evaluation has the value, 10, is that 

good, fair, or poor?

• Statistics provide a framework for cluster validity
– The more “atypical” a clustering result is, the more likely it represents 

valid structure in the data

– Compare the value of an index obtained from the given data with those 

resulting from random data. 

• Compute the evaluation index (e.g., Silhouette Score, Davies-Bouldin Index) 

for both.

• Try to judge how likely it is that our observed value was

achieved by random chance.

• If the index value from the real data is significantly different 

from those obtained from random data, it suggests that the 

clustering captures real structure.

Assessing the Significance of Cluster Validity Measures



• Example
– Compare SSE of three cohesive clusters against three clusters in 

random data

Statistical Framework for SSE
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Histogram shows SSE of three clusters in 500 sets of random data 

points of size 100 distributed over the range 0.2 – 0.8 for x and y valuesSSE = 0.005

- The lowest SSE shown in histogram is 0.0173. For the three clusters, the SSE is 0.0050. 

We could therefore conservatively claim that there is less than a 1% chance that a clustering 

such as that of these three clusters could occur by chance.



• Correlation of ideal similarity and proximity matrices 

for the K-means clusterings of the following two data 

sets. 

Statistical Framework for Correlation
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Corr = -0.9235 Corr = -0.5810

Correlation is negative because it is calculated between a distance 

matrix and the ideal similarity matrix. Higher magnitude is better. 

Histogram of  correlation 

for 500 random data sets 

of size 100 with x and y 

values  of points between 

0.2 and 0.8. 



“The validation of clustering structures is the most difficult 

and frustrating part of cluster analysis. 

   Without a strong effort in this direction, cluster analysis will 

remain a black art accessible only to those true believers 

who have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes

• H. Xiong and Z. Li. Clustering Validation Measures. In C. C. Aggarwal and C. K. Reddy, 

editors, Data Clustering: Algorithms and Applications, pages 571–605. Chapman & 

Hall/CRC, 2013.

Final Comment on Cluster Validity


	Slide 1: Artificial Intelligence  for Medicine II 
	Slide 2: Hierarchical Clustering
	Slide 3: Dendrograms
	Slide 4: Dendrograms
	Slide 5: How to Define Inter-Cluster Distance
	Slide 6: Inter-cluster distance (similarity) metrics
	Slide 7: Inter-cluster distance metrics (cont.)
	Slide 8: MIN or Single Link 
	Slide 9: Hierarchical Clustering: MIN
	Slide 10: MAX or Complete Linkage
	Slide 11: Hierarchical Clustering: MAX
	Slide 12: Hierarchical Clustering
	Slide 13: Agglomerative Clustering (Bottom-Up Merging)
	Slide 14: Agglomerative Clustering (Bottom-Up Merging)
	Slide 15: Divisive Clustering (Top-down Splitting)
	Slide 16: Agglomerative Algorithms
	Slide 17: Agglomerative Algorithms
	Slide 18: Agglomerative Algorithm
	Slide 19: Basic agglomerative algorithms
	Slide 20: Agglomerative Clustering
	Slide 21: Density-Based Clustering Methods
	Slide 22: DBSCAN
	Slide 23: DBSCAN: Density Based Spatial Clustering of Applications with Noise
	Slide 24: DBSCAN: Core, Border and Noise Points
	Slide 25: DBSCAN Algorithm
	Slide 26: When DBSCAN Works Well
	Slide 27: Cluster Validity 
	Slide 28: Clusters found in Random Data
	Slide 29: Measures of Cluster Validity
	Slide 30: Unsupervised Measures: Cohesion and Separation
	Slide 31: Unsupervised Measures: Cohesion and Separation
	Slide 32: Unsupervised Measures: Cohesion and Separation
	Slide 33: Unsupervised Measures: Silhouette Coefficient
	Slide 34: Measuring Cluster Validity Via Correlation
	Slide 35: Measuring Cluster Validity Via Correlation
	Slide 36: Measuring Cluster Validity Via Correlation
	Slide 37: Judging clustering quality visually using a similarity matrix 
	Slide 38: Judging a Clustering Visually by its Similarity Matrix
	Slide 39: Judging a Clustering Visually by its Similarity Matrix
	Slide 40: Judging a Clustering Visually by its Similarity Matrix
	Slide 41: Determining the Correct Number of Clusters Using SSE curve
	Slide 42: Determining the Correct Number of Clusters
	Slide 43: Determining the Correct Number of Clusters
	Slide 44: Assessing the Significance of Cluster Validity Measures
	Slide 45: Statistical Framework for SSE
	Slide 46: Statistical Framework for Correlation
	Slide 47: Final Comment on Cluster Validity

