
Artificial Intelligence
for

Medicine II

Spring 2025

Lecture 111: Machine Learning Overview

(Many slides adapted from mostly Alex Vakanski, D. Jurafsky, Bing Liu, 
Han, Kamber & Pei; Tan, Steinbach, Kumar and the web)

AI for Medicine II 1



2

Machine Learning Basics

• Artificial Intelligence is a scientific field concerned with the development of 
algorithms that allow computers to learn without being explicitly programmed

• Machine Learning is a branch of Artificial Intelligence, which focuses on methods 
that learn from data and make predictions on unseen data
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Machine Learning Types

• Supervised: learning with labeled data

▪ Example: email classification, image classification

▪ Example: regression for predicting real-valued outputs

• Unsupervised: discover patterns in unlabeled data

▪ Example: cluster similar data points

• Reinforcement learning: learn to act based on feedback/reward

▪ Example: learn to play Go  
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Supervised Learning

• Supervised learning categories and techniques

▪ Numerical classifier functions 

o Linear classifier, perceptron, logistic regression, support vector machines (SVM), neural 
networks 

▪ Parametric (probabilistic) functions 

o Naïve Bayes, Gaussian discriminant analysis (GDA), hidden Markov models (HMM), 
probabilistic graphical models 

▪ Non-parametric (instance-based) functions

o k-nearest neighbors, kernel regression, kernel density estimation, local regression

▪ Symbolic functions

o Decision trees, classification and regression trees (CART) 

▪ Aggregation (ensemble) learning

o Bagging, boosting (Adaboost), random forest 
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Unsupervised Learning 

• Unsupervised learning categories and techniques

▪ Clustering

o k-means clustering

o Mean-shift clustering

o Spectral clustering 

▪ Density estimation 

o Gaussian mixture model (GMM) 

o Graphical models 

▪ Dimensionality reduction 

o Principal component analysis (PCA) 

o Factor analysis 
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Nearest Neighbor Classifier

• Nearest Neighbor – for each test data point, assign the class label of the nearest 
training data point

▪ Adopt a distance function to find the nearest neighbor

o Calculate the distance to each data point in the training set, and assign the class of the nearest 
data point (minimum distance)

▪ It does not require learning a set of weights
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Nearest Neighbor Classifier

• For image classification, the distance between all pixels is calculated (e.g., using ℓ1 
norm, or ℓ2 norm)

▪ Accuracy on CIFAR-10: 38.6%

• Disadvantages:

▪ The classifier must remember all training data and store it for future comparisons with 
the test data

▪ Classifying a test image is expensive since it requires a comparison to all training images
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Picture from: https://cs231n.github.io/classification/
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k-Nearest Neighbors Classifier

• k-Nearest Neighbors approach considers multiple neighboring data points to 
classify a test data point

▪ E.g., 3-nearest neighbors 

o The test example in the figure is the + mark

o The class of the test example is obtained by voting (based on the distance to the 3 closest points)
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Linear Classifier

• Linear classifier

▪ Find a linear function f of the inputs xi that separates the classes

𝑓 𝑥𝑖 , 𝑊, 𝑏 = 𝑊𝑥𝑖 + 𝑏

▪ Use pairs of inputs and labels to find the weights matrix W and the bias vector b

o The weights and biases are the parameters of the function f

▪ Several methods have been used to find the optimal set of parameters of a linear 
classifier 

o A common method of choice is the Perceptron algorithm, where the parameters are updated 
until a minimal error is reached (single layer, does not use backpropagation)

▪ Linear classifier is a simple approach, but it is a building block of advanced classification 
algorithms, such as SVM and neural networks

o Earlier multi-layer neural networks were referred to as multi-layer perceptrons (MLPs)
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Linear Classifier

• The decision boundary is linear

▪ A straight line in 2D, a flat plane in 3D, a hyperplane in 3D and 
higher dimensional space

• Example: classify an input image

▪ The selected parameters in this example are not good, because the 
predicted cat score is low
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Support Vector Machines

• Support vector machines (SVM)
▪ How to find the best decision boundary?

o All lines in the figure correctly separate the 2 classes

o The line that is farthest from all training examples 
will have better generalization capabilities

▪ SVM solves an optimization problem:

o First, identify a decision boundary that correctly 
classifies the examples

Machine Learning Basics

o Next, increase the geometric margin between the 
boundary and all examples 

▪ The data points that define the maximum 
margin width are called support vectors

▪ Find W and b by solving:
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Linear vs Non-linear Techniques

• Linear classification techniques

▪ Linear classifier

▪ Perceptron

▪ Logistic regression

▪ Linear SVM

▪ Naïve Bayes

• Non-linear classification techniques

▪ k-nearest neighbors

▪ Non-linear SVM

▪ Neural networks

▪ Decision trees

▪ Random forest

Linear vs Non-linear Techniques
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Linear vs Non-linear Techniques

• For some tasks, input data 
can be linearly separable, 
and linear classifiers can be 
suitably applied

• For other tasks, linear 
classifiers may have 
difficulties to produce 
adequate decision 
boundaries 

Linear vs Non-linear Techniques

Picture from: Y-Fan Chang – An Overview of Machine Learning
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Non-linear Techniques

• Non-linear classification

▪ Features 𝑧𝑖  are obtained as non-linear functions of the inputs 𝑥𝑖  

▪ It results in non-linear decision boundaries

▪ Can deal with non-linearly separable data

Linear vs Non-linear Techniques

Picture from: Y-Fan Chang – An Overview of Machine Learning
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Non-linear Support Vector Machines

• Non-linear SVM

▪ The original input space is mapped to a higher-dimensional feature space where the 
training set is linearly separable

▪ Define a non-linear kernel function to calculate a non-linear decision boundary in the 
original feature space

Linear vs Non-linear Techniques
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Binary vs Multi-class Classification

• A classification problem with only 2 classes is referred to as binary classification

▪ The output labels are 0 or 1

▪ E.g., benign or malignant tumor, spam or no-spam email

• A problem with 3 or more classes is referred to as multi-class classification

Binary vs Multi-class Classification
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Binary vs Multi-class Classification

• Both the binary and multi-class classification problems can be linearly or non-
linearly separated

▪ Figure: linearly and non-linearly separated data for binary classification problem

Binary vs Multi-class Classification
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Computer Vision Tasks

• Computer vision has been the primary area of interest for ML

• The tasks include: classification, localization, object detection, instance 
segmentation

Machine Learning Basics

Picture from: Fie-Fei Li, Andrej Karpathy, Justin Johnson – Understanding and Visualizing CNNs 
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No-Free-Lunch Theorem

• Wolpert (2002) - The Supervised Learning No-Free-Lunch Theorems

• The derived classification models for supervised learning are simplifications of the 
reality 

▪ The simplifications are based on certain assumptions

▪ The assumptions fail in some situations

o E.g., due to inability to perfectly estimate ML model parameters from limited data

• In summary, No-Free-Lunch Theorem states:

▪ No single classifier works the best for all possible problems

▪ Since we need to make assumptions to generalize

Machine Learning Basics

https://link.springer.com/chapter/10.1007/978-1-4471-0123-9_3
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