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Machine Learning Basics

Machine Learning Basics

o Artificial Intelligence is a scientific field concerned with the development of
algorithms that allow computers to learn without being explicitly programmed

e Machine Learning is a branch of Artificial Intelligence, which focuses on methods
that learn from data and make predictions on unseen data
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Machine Learning Types

Machine Learning Basics

e Supervised: learning with labeled data
= Example: email classification, image classification
= Example: regression for predicting real-valued outputs

o Unsupervised: discover patterns in unlabeled data
= Example: cluster similar data points

e Reinforcement learning: learn to act based on feedback/reward
= Example: learn to play Go

TEXT classA

>

class B v

%Ka
P
°
% &
%
m]
BD
e
[m}
=
n
[ |
'-'-l
[

Il

Regression Clustering

Classification

Slide credit: Ismini Lourentzou - Introduction to Deep Learning



Supervised Learning

Machine Learning Basics

e Supervised learning categories and techniques

= Numerical classifier functions

o Linear classifier, perceptron, logistic regression, support vector machines (SVM), neural
networks

Parametric (probabilistic) functions

o Naive Bayes, Gaussian discriminant analysis (GDA), hidden Markov models (HMM),
probabilistic graphical models

= Non-parametric (instance-based) functions

o k-nearest neighbors, kernel regression, kernel density estimation, local regression
Symbolic functions

o Decision trees, classification and regression trees (CART)

Aggregation (ensemble) learning
o Bagging, boosting (Adaboost), random forest

Slide credit: Y-Fan Chang— An Overview of Machine Learning



Unsupervised Learning

Machine Learning Basics

o Unsupervised learning categories and techniques
= Clustering
o k-means clustering
o Mean-shift clustering
o Spectral clustering
= Density estimation
o Gaussian mixture model (GMM)
o Graphical models
= Dimensionality reduction
o Principal component analysis (PCA)
o Factor analysis

Slide credit: Y-Fan Chang— An Overview of Machine Learning



Nearest Neighbor Classifier

Machine Learning Basics

e Nearest Neighbor — for each test data point, assign the class label of the nearest
training data point
= Adopt a distance function to find the nearest neighbor

o Calculate the distance to each data point in the training set, and assign the class of the nearest
data point (minimum distance)

= It does not require learning a set of weights
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Nearest Neighbor Classifier

Machine Learning Basics

e For image classification, the distance between all pixels is calculated (e.g., using ¢,
norm, or £, norm)

= Accuracy on CIFAR-10: 38.6%

e Disadvantages:

= The classifier must remember all training data and store it for future comparisons with
the test data

= Classifying a test image is expensive since it requires a comparison to all training images
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https://cs231n.github.io/classification/

k-Nearest Neighbors Classifier

Machine Learning Basics

o k-Nearest Neighbors approach considers multiple neighboring data points to
classify a test data point
= E.g., 3-nearest neighbors
o The test example in the figure is the + mark
o The class of the test example is obtained by voting (based on the distance to the 3 closest points)
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Linear Classifier

Machine Learning Basics

o Linear classifier
= Find a linear function f of the inputs x; that separates the classes

fOx, W,b) =Wx; +b

= Use pairs of inputs and labels to find the weights matrix W and the bias vector b
o The weights and biases are the parameters of the function f

= Several methods have been used to find the optimal set of parameters of a linear
classifier

o A common method of choice is the Perceptron algorithm, where the parameters are updated
until a minimal error is reached (single layer, does not use backpropagation)

= Linear classifier is a simple approach, but it is a building block of advanced classification
algorithms, such as SVM and neural networks

o Earlier multi-layer neural networks were referred to as multi-layer perceptrons (MLPs)



Linear Classifier

Machine Learning Basics

e The decision boundary is linear

= A straight line in 2D, a flat plane in 3D, a hyperplane in 3D and
higher dimensional space

e Example: classify an input image

= The selected parameters in this example are not good, because the
predicted cat score is low

stretch pixels into single column
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Picture from: https://cs231n.github.io/classification/
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Support Vector Machines

Machine Learning Basics

o Support vector machines (SVM) 1 o
= How to find the best decision boundary? . Yo b
o All lines in the figure correctly separate the 2 classes --\l'.j__'":i?::-;«..i \

o The line that is farthest from all training examples — e
will have better generalization capabilities

= SVM solves an optimization problem: U 5 |j"*z;:.\_\

o First, identify a decision boundary that correctly O XN
classifies the examples x.
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o Next, increase the geometric margin between the

boundary and all examples
* The data points that define the maximum Support Vectors -.
margin width are called support vectors R — 4
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Linear vs Non-linear Techniques

Linear vs Non-linear Techniques

e Linear classification techniques
= Linear classifier
= Perceptron
= Logistic regression
= Linear SVM
= Naive Bayes

e Non-linear classification techniques

= k-nearest neighbors
= Non-linear SVM
= Neural networks

Decision trees
Random forest
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Linear vs Non-linear Techniques

Linear vs Non-linear Techniques

e For some tasks, input data
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Non-linear Techniques

Linear vs Non-linear Techniques

e Non-linear classification
= Features z; are obtained as non-linear functions of the inputs x;
= It results in non-linear decision boundaries
= Can deal with non-linearly separable data

Inputs: x; = [Xn1  Xn2]
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Outputs: f(x;, W,b) =Wz; + b
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Non-linear Support Vector Machines

Linear vs Non-linear Techniques

e Non-linear SVM

= The original input space is mapped to a higher-dimensional feature space where the
training set is linearly separable

= Define a non-linear kernel function to calculate a non-linear decision boundary in the
original feature space
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Binary vs Multi-class Classification

Binary vs Multi-class Classification

o A classification problem with only 2 classes is referred to as binary classification
= The output labels are 0 or 1
= E.g., benign or malignant tumor, spam or no-spam email

e A problem with 3 or more classes is referred to as multi-class classification

Binary classification: Multi-class classification:
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Binary vs Multi-class Classification

Binary vs Multi-class Classification

e Both the binary and multi-class classification problems can be linearly or non-

linearly separated

= Figure: linearly and non-linearly separated data for binary classification problem
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Computer Vision Tasks

Machine Learning Basics

e Computer vision has been the primary area of interest for ML

e The tasks include: classification, localization, object detection, instance
segmentation
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Picture from: Fie-Fei Li, Andrej Karpathy, Justin Johnson - Understanding and Visualizing CNNs
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No-Free-L.unch Theorem

Machine Learning Basics

e Wolpert (2002) - The Supervised Learning No-Free-Lunch Theorems

e The derived classification models for supervised learning are simplifications of the
reality

= The simplifications are based on certain assumptions

= The assumptions fail in some situations
o E.g., due to inability to perfectly estimate ML model parameters from limited data

e In summary, No-Free-Lunch Theorem states:
= No single classifier works the best for all possible problems
= Since we need to make assumptions to generalize
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