
Artificial Intelligence
for

Medicine II

Spring 2025

Lecture 112: NNs and Deep Learning

(Many slides adapted from mostly Alex Vakanski, D. Jurafsky, Bing Liu,
Han, Kamber & Pei; Tan, Steinbach, Kumar and the web)

AI for Medicine II 1

2

Lecture Outline

• ML vs. Deep Learning

• Introduction to NNs (Neural Networks)

• NN architectures

▪ Convolutional NNs

▪ Recurrent NNs

▪ Encoder-Decoder NNs

▪ Transformers

3

ML vs. Deep Learning

• Conventional machine learning methods rely on human-designed feature
representations

▪ ML becomes just optimizing weights to best make a final prediction

Introduction to Deep Learning

Picture from: Ismini Lourentzou – Introduction to Deep Learning

4

ML vs. Deep Learning

• Deep learning (DL) is a machine learning subfield that uses multiple layers for
learning data representations

▪ DL is exceptionally effective at learning patterns

Introduction to Deep Learning

Picture from: https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

5

ML vs. Deep Learning

• DL applies a multi-layer process for learning rich hierarchical features (i.e., data
representations)

▪ Input image pixels → Edges → Textures → Parts → Objects

Introduction to Deep Learning

Low-
Level

Features

Mid-
Level

Features

OutputHigh-Level
Features

Trainable
Classifie

r

Slide credit: Param Vir Singh – Deep Learning

6

Why is DL Useful?

• DL provides a flexible, learnable framework for representing visual, text, linguistic
information

▪ Can learn in supervised and unsupervised manner

• DL represents an effective end-to-end learning system

• Requires large amounts of training data

• Since about 2010, DL has outperformed other ML techniques

▪ First in vision and speech, then NLP, and other applications

Introduction to Deep Learning

7

Representational Power

• NNs with at least one hidden layer are universal approximators

▪ Given any continuous function h(x) and some 𝜖 > 0, there exists a NN with one
hidden layer (and with a reasonable choice of non-linearity) described with the
function f(x), such that ∀𝑥, ℎ 𝑥 − 𝑓(𝑥) < 𝜖

▪ I.e., NN can approximate any arbitrary complex continuous function

Introduction to Deep Learning

• NNs use nonlinear mapping of the inputs x to the
outputs f(x) to compute complex decision boundaries

• But then, why use deeper NNs?

▪ The fact that deep NNs work better is an empirical
observation

▪ Mathematically, deep NNs have the same
representational power as a one-layer NN

8

Introduction to Neural Networks

• Handwritten digit recognition (MNIST dataset)

▪ The intensity of each pixel is considered an input element

▪ Output is the class of the digit

Introduction to Neural Networks

Input

16 x 16 = 256

1x

2x

256x
……

Ink → 1
No ink → 0

……

y1

y2

y10

Each dimension represents
the confidence of a digit

is 1

is 2

is 0

……
0.
1
0.
7

0.2

The image is “2”

Output

Slide credit: Hung-yi Lee – Deep Learning Tutorial

9

Introduction to Neural Networks

• Handwritten digit recognition

Introduction to Neural Networks

Machine “2”

1x

2x

256x

…… ……
y1

y2

y10𝑓: 𝑅256 → 𝑅10

The function 𝑓 is represented by a neural network

Slide credit: Hung-yi Lee – Deep Learning Tutorial

10

Elements of Neural Networks

• NNs consist of hidden layers with neurons (i.e., computational units)

• A single neuron maps a set of inputs into an output number, or 𝑓: 𝑅𝐾 → 𝑅

Introduction to Neural Networks

bwawawaz KK ++++= 2211

z

1w

2w

Kw…

1a

2a

Ka

+

b

()z

bias

a

Activation
functionweight

s

𝑎 = 𝜎 𝑧

input

output

…
Slide credit: Hung-yi Lee – Deep Learning Tutorial

11

Elements of Neural Networks

• A NN with one hidden layer and one output layer

Introduction to Neural Networks

𝒉

𝒚

𝒙

𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓 𝒉 = 𝝈(𝐖𝟏𝒙 + 𝒃𝟏)

𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓 𝒚 = 𝝈(𝑾𝟐𝒉 + 𝒃𝟐)

Weights Biases

Activation functions

4 + 2 = 6 neurons (not counting inputs)
[3 × 4] + [4 × 2] = 20 weights

4 + 2 = 6 biases
26 learnable parameters

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

12

Elements of Neural Networks

• A neural network playground link

Introduction to Neural Networks

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.45430&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

13

Elements of Neural Networks

• Deep NNs have many hidden layers

▪ Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)

▪ Each neuron is connected to all neurons in the succeeding layer

Introduction to Neural Networks

Output
LayerHidden

Layers

Input
Layer

Input Outpu
t

1x

2x

Layer
1

……

Nx

……

Layer
2

……

Layer
L

……

…
…
…
…

…
…

……

y1

y2

yM

Slide credit: Hung-yi Lee – Deep Learning Tutorial

14

Elements of Neural Networks

• A simple network, toy example

Introduction to Neural Networks

()z

z

()
ze

z
−+

=
1

1


Sigmoid Function

1

-1

1

-
2

1

-1

1

0

4

-2

0.98

0.12

1 ∙ 1 + −1 ∙ −2 + 1 = 4

1 ∙ −1 + −1 ∙ 1 + 0 =-2

Slide credit: Hung-yi Lee – Deep Learning Tutorial

15

Elements of Neural Networks

• A simple network, toy example (cont’d)

▪ For an input vector [1 −1]𝑇, the output is [0.62 0.83]𝑇

Introduction to Neural Networks

1

-
2

1

-1

1

0

4

-2

0.98

0.12

2

-
1

-1

-2

3

-
1

4

-1

0.86

0.11

0.62

0.83

0

0

-
2

2

1

-1

𝑓: 𝑅2 → 𝑅2 𝑓
1

−1
=

0.62
0.83

Slide credit: Hung-yi Lee – Deep Learning Tutorial

16

Matrix Operation

• Matrix operations are helpful when working with multidimensional inputs and
outputs

Introduction to Neural Networks

1

-
2

1

-1

1

0

4

-2

0.98

0.12

1

-1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

𝜎
1

−1
1 −2

−1 1 +
1
0

0.98
0.12=

4
−2

bW x +𝜎 = a

17

Matrix Operation

• Multilayer NN, matrix calculations for the first layer

▪ Input vector x, weights matrix W1, bias vector b1, output vector a1

Introduction to Neural Networks

1x

2x

……

Nx

…… …… ……

…
…
…
…

…
…

……
y1

y2

yM

W1

x a
1

b
1W1 x += 𝜎

b
1

a
1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

18

Matrix Operation

• Multilayer NN, matrix calculations for all layers

Introduction to Neural Networks

1x

2x

……

Nx

…… …… ……

…
…
…
…

…
…

……
y1

y2

yM

W1 W2 WL

b
2

b
L

x a
1

a
2 y

b
1W1 x +𝜎

b
2W2 a

1 +𝜎
b
LWL +𝜎 aL-1

b
1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

19

Matrix Operation

• Multilayer NN, function f maps inputs x to outputs y, i.e., 𝑦 = 𝑓(𝑥)

Introduction to Neural Networks

= 𝜎 𝜎

1x

2x

……

Nx

…… …… ……

…
…
…
…

…
…

……
y1

y2

yM

W1 W2 WL

b
2

b
L

x a
1

a
2 y

y = 𝑓 x b
1W1 x +𝜎

b
2W2 + b

LWL +…

b
1

…

Slide credit: Hung-yi Lee – Deep Learning Tutorial

20

Softmax Layer

• In multi-class classification tasks, the output layer is typically a softmax layer

▪ I.e., it employs a softmax activation function

▪ If a layer with a sigmoid activation function is used as the output layer instead, the
predictions by the NN may not be easy to interpret

o Note that an output layer with sigmoid activations can still be used for binary classification

Introduction to Neural Networks

Slide credit: Hung-yi Lee – Deep Learning Tutorial

A Layer with Sigmoid Activations

()11 zy =

()22 zy =

()33 zy =

1z

2z

3z







3

-
3

1

0.95

0.05

0.73

21

Softmax Layer

• The softmax layer applies softmax activations to output
a probability value in the range [0, 1]

▪ The values z inputted to the softmax layer are referred to as
logits

Introduction to Neural Networks

1z

2z

3z

A Softmax Layer

e

e

e

1ze

2z
e

3z
e

+


=

=
3

1

1
1

j

zz jeey


=

3

1j

z je







3

-
3

1 2.7

20

0.05

0.88

0.12

≈0


=

=
3

1

2
2

j

zz jeey


=

=
3

1

3
3

j

zz jeey

Probability:
▪ 0 < 𝑦𝑖 < 1
▪ σ𝑖 𝑦𝑖 = 1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

22

Activation Functions

• Non-linear activations are needed to learn complex (non-linear) data
representations

▪ Otherwise, NNs would be just a linear function (such as W1W2𝑥 = 𝑊𝑥)

▪ NNs with large number of layers (and neurons) can approximate more complex
functions

o Figure: more neurons improve representation (but, may overfit)

Introduction to Neural Networks

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

23

Activation: Sigmoid

• Sigmoid function σ: takes a real-valued number and “squashes” it into the range
between 0 and 1

▪ The output can be interpreted as the firing rate of a biological neuron

o Not firing = 0; Fully firing = 1

▪ When the neuron’s activation are 0 or 1, sigmoid neurons saturate

o Gradients at these regions are almost zero (almost no signal will flow)

▪ Sigmoid activations are less common in modern NNs

Introduction to Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

ℝ𝑛 → 0,1

𝑥

𝑓 𝑥

24

Activation: Tanh

• Tanh function: takes a real-valued number and “squashes” it into range between -1
and 1

▪ Like sigmoid, tanh neurons saturate

▪ Unlike sigmoid, the output is zero-centered

o It is therefore preferred than sigmoid

▪ Tanh is a scaled sigmoid: tanh(𝑥) = 2 ∙ 𝜎(2𝑥) − 1

Introduction to Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

ℝ𝑛 → −1,1

𝑥

𝑓 𝑥

25

Activation: ReLU

• ReLU (Rectified Linear Unit): takes a real-valued number and thresholds it at zero

 𝑓 𝑥 = max(0, 𝑥)

Introduction to Neural Networks

▪ Most modern deep NNs use ReLU
activations

▪ ReLU is fast to compute

o Compared to sigmoid, tanh

o Simply threshold a matrix at zero

▪ Accelerates the convergence of gradient
descent

o Due to linear, non-saturating form

▪ Prevents the gradient vanishing problem

ℝ𝑛 → ℝ+
𝑛

𝑥

𝑓 𝑥

26

Activation: Leaky ReLU

• The problem of ReLU activations: they can “die”

▪ ReLU could cause weights to update in a way that the gradients can become zero and
the neuron will not activate again on any data

▪ E.g., when a large learning rate is used

• Leaky ReLU activation function is a variant of ReLU
▪ Instead of the function being 0 when 𝑥 < 0, a leaky ReLU has a small negative slope (e.g.,

α = 0.01, or similar)

Introduction to Neural Networks

𝑓 𝑥

= ቊ
𝛼𝑥 for 𝑥 < 0

𝑥 for 𝑥 ≫ 0

▪ This resolves the dying ReLU problem

▪ Most current works still use ReLU

o With a proper setting of the learning rate,
the problem of dying ReLU can be
avoided

27

Activation: Linear Function

• Linear function means that the output signal is proportional to the input signal to
the neuron

Introduction to Neural Networks

𝑓 𝑥 = 𝑐𝑥

ℝ𝑛 → ℝ𝑛

▪ If the value of the constant c is 1, it is also
called identity activation function

▪ This activation type is used in regression
problems

o E.g., the last layer can have linear
activation function, in order to output a
real number (and not a class membership)

28

Training NNs

• The network parameters 𝜃 include the weight matrices and bias vectors from all
layers

▪ Often, the model parameters 𝜃 are referred to as weights

• Training a model to learn a set of parameters 𝜃 that are optimal (according to a
criterion) is one of the greatest challenges in ML

Training Neural Networks

𝜃 = 𝑊1, 𝑏1, 𝑊2, 𝑏2, ⋯ 𝑊𝐿 , 𝑏𝐿

16 x 16 = 256

1x

2x
……

256x

……

…
…
…
…

…
…

……

y1

y2

y10

0.
1
0.
7

0.2

is 1

is 2

is 0

Softm
ax

Slide credit: Hung-yi Lee – Deep Learning Tutorial

29

Training NNs

• Data preprocessing - helps convergence during training

▪ Mean subtraction, to obtain zero-centered data

o Subtract the mean for each individual data dimension (feature)

▪ Normalization

o Divide each feature by its standard deviation

• To obtain standard deviation of 1 for each data dimension (feature)

o Or, scale the data within the range [0,1] or [-1, 1]

• E.g., image pixel intensities are divided by 255 to be scaled in the [0,1] range

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-2/

https://cs231n.github.io/neural-networks-2/

30

Training NNs

• To train a NN, set the parameters 𝜃 such that for a training subset of images, the
corresponding elements in the predicted output have maximum values

Training Neural Networks

y1 has the maximum valueInput:

y2 has the maximum valueInput:
.
.
.

Input: y9 has the maximum value

Input: y10 has the maximum value

Slide credit: Hung-yi Lee – Deep Learning Tutorial

31

Training NNs

• Define a loss function/objective function/cost function ℒ 𝜃 that calculates the
difference (error) between the model prediction and the true label

▪ E.g., ℒ 𝜃 can be mean-squared error, cross-entropy, etc.

Training Neural Networks

1x

2x

……

256x

……

…
…
…
…

…
…

……
y1

y2

y10

Cost

0.
2
0.
3

0.5

……

1

0

0

……

True label “1”

ℒ(𝜃)

……

Slide credit: Hung-yi Lee – Deep Learning Tutorial

32

Training NNs

• For a training set of 𝑁 images, calculate the total loss overall all images: ℒ 𝜃 =
σ𝑛=1

𝑁 ℒ𝑛 𝜃

• Find the optimal parameters 𝜃∗ that minimize the total loss ℒ 𝜃

Training Neural Networks

x1

x2

xN

NN

NN

NN

…
…

…
…

y1

y
2

yN

ො𝑦1

ො𝑦2

ො𝑦𝑁

ℒ1 𝜃

…
…

…
…

x3 NN y3ො𝑦3

ℒ2 𝜃

ℒ3 𝜃

ℒ𝑛 𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial

33

Loss Functions

• Classification tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Training
examples

Output
Layer

Softmax Activations
 [maps to a probability distribution]

Loss function Cross-entropy ℒ 𝜃 = −
1

𝑁
෍

𝑖=1

𝑁

෍

𝑘=1

𝐾

𝑦𝑘
(𝑖)

log ො𝑦𝑘
(𝑖)

+ 1 − 𝑦𝑘
(𝑖)

 log 1 − ො𝑦𝑘
𝑖

Pairs of 𝑁 inputs 𝑥𝑖 and ground-truth class labels 𝑦𝑖

Ground-truth class labels 𝑦𝑖 and model predicted class labels ො𝑦𝑖

34

Loss Functions

• Regression tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Training
examples

Output
Layer

Loss
function

Mean Squared Error ℒ 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑦(𝑖) − ො𝑦(𝑖) 2

Linear (Identity) or Sigmoid Activation

Mean Absolute Error ℒ 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑦(𝑖) − ො𝑦(𝑖)

Pairs of 𝑁 inputs 𝑥𝑖 and ground-truth output values 𝑦𝑖

35

Training NNs

• Optimizing the loss function ℒ 𝜃

▪ Almost all DL models these days are trained with a variant of the gradient descent (GD)
algorithm

▪ GD applies iterative refinement of the network parameters 𝜃

▪ GD uses the opposite direction of the gradient of the loss with respect to the NN
parameters (i.e.,𝛻ℒ 𝜃 = Τ𝜕ℒ 𝜕𝜃𝑖) for updating 𝜃

o The gradient of the loss function 𝛻ℒ 𝜃 gives the direction of fastest increase of the loss function
ℒ 𝜃 when the parameters 𝜃 are changed

Training Neural Networks

ℒ 𝜃

𝜃𝑖

𝜕ℒ

𝜕𝜃𝑖

36

Gradient Descent Algorithm

• Steps in the gradient descent algorithm:

1. Randomly initialize the model parameters, 𝜃0

2. Compute the gradient of the loss function at the initial parameters 𝜃0: 𝛻ℒ 𝜃0

3. Update the parameters as: 𝜃𝑛𝑒𝑤 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

o Where α is the learning rate

4. Go to step 2 and repeat (until a terminating criterion is reached)

Training Neural Networks

Loss ℒ

Parameters 𝜃

Global loss minimum ℒ𝑚𝑖𝑛

Gradient 𝛻ℒ =
𝜕ℒ

𝜕𝜃
 Initial

parameters
𝜃0

Parameter update: 𝜃𝑛𝑒𝑤= 𝜃 − 𝛼𝛻ℒ 𝜃0

37

Gradient Descent Algorithm

• Example: a NN with only 2 parameters 𝑤1 and 𝑤2, i.e., 𝜃 = 𝑤1, 𝑤2

▪ The different colors represent the values of the loss (minimum loss 𝜃∗ is ≈ 1.3)

Training Neural Networks

𝑤1

𝑤2

2. Compute the
gradient at 𝜃0, 𝛻ℒ 𝜃0

𝜃0

3. Times the learning
rate 𝜂, and update 𝜃,
𝜃𝑛𝑒𝑤 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃1

1. Randomly pick a
starting point 𝜃0

4. Go to step 2, repeat
−𝛻ℒ 𝜃0

𝜃1 =
𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃∗

𝛻ℒ 𝜃0 =
𝜕ℒ 𝜃0 /𝜕𝑤1

𝜕ℒ 𝜃0 /𝜕𝑤2

Slide credit: Hung-yi Lee – Deep Learning Tutorial

38

Gradient Descent Algorithm

• Example (contd.)

Training Neural Networks

𝑤1

𝑤2

𝜃0

𝜃1

𝜃1 − 𝛼𝛻ℒ 𝜃1

𝜃2 − 𝛼𝛻ℒ 𝜃2

𝜃2

Eventually, we would reach a
minimum …..

Slide credit: Hung-yi Lee – Deep Learning Tutorial

2. Compute the gradient
at 𝜃𝑜𝑙𝑑, 𝛻ℒ 𝜃𝑜𝑙𝑑

3. Times the learning rate
𝜂, and update 𝜃,

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼𝛻ℒ 𝜃𝑜𝑙𝑑

4. Go to step 2, repeat

39

Gradient Descent Algorithm

• Gradient descent algorithm stops when a local minimum of the loss surface is
reached

▪ GD does not guarantee reaching a global minimum

▪ However, empirical evidence suggests that GD works well for NNs

Training Neural Networks

ℒ 𝜃

𝜃

Picture from: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

40

Gradient Descent Algorithm

• For most tasks, the loss surface ℒ 𝜃 is highly complex (and non-convex)

Training Neural Networks

ℒ

𝑤1 𝑤2

Slide credit: Hung-yi Lee – Deep Learning Tutorial

• Random initialization in NNs results
in different initial parameters 𝜃0
every time the NN is trained

▪ Gradient descent may reach different
minima at every run

▪ Therefore, NN will produce different
predicted outputs

• In addition, currently we don’t have
algorithms that guarantee reaching a
global minimum for an arbitrary loss
function

41

Backpropagation

• Modern NNs employ the backpropagation method for calculating the gradients of
the loss function 𝛻ℒ 𝜃 = Τ𝜕ℒ 𝜕𝜃𝑖

▪ Backpropagation is short for “backward propagation”

• For training NNs, forward propagation (forward pass) refers to passing the inputs
𝑥 through the hidden layers to obtain the model outputs (predictions) 𝑦

▪ The loss ℒ 𝑦, ො𝑦 function is then calculated

▪ Backpropagation traverses the network in reverse order, from the outputs 𝑦 backward
toward the inputs 𝑥 to calculate the gradients of the loss 𝛻ℒ 𝜃

▪ The chain rule is used for calculating the partial derivatives of the loss function with
respect to the parameters 𝜃 in the different layers in the network

• Each update of the model parameters 𝜃 during training takes one forward and one
backward pass (e.g., of a batch of inputs)

• Automatic calculation of the gradients (automatic differentiation) is available in all
current deep learning libraries

▪ It significantly simplifies the implementation of deep learning algorithms, since it
obviates deriving the partial derivatives of the loss function by hand

Training Neural Networks

42

Mini-batch Gradient Descent

• It is wasteful to compute the loss over the entire training dataset to perform a
single parameter update for large datasets

▪ E.g., ImageNet has 14M images

▪ Therefore, GD (a.k.a. vanilla GD) is almost always replaced with mini-batch GD

• Mini-batch gradient descent

▪ Approach:

o Compute the loss ℒ 𝜃 on a mini-batch of images, update the parameters 𝜃, and repeat until all
images are used

o At the next epoch, shuffle the training data, and repeat the above process

▪ Mini-batch GD results in much faster training

▪ Typical mini-batch size: 32 to 256 images

▪ It works because the gradient from a mini-batch is a good approximation of the gradient
from the entire training set

Training Neural Networks

43

Stochastic Gradient Descent

• Stochastic gradient descent

▪ SGD uses mini-batches that consist of a single input example

o E.g., one image mini-batch

▪ Although this method is very fast, it may cause significant fluctuations in the loss
function

o Therefore, it is less commonly used, and mini-batch GD is preferred

▪ In most DL libraries, SGD typically means a mini-batch GD (with an option to add
momentum)

Training Neural Networks

44

Problems with Gradient Descent

• Besides the local minima problem, the GD algorithm can be very slow at plateaus,
and it can get stuck at saddle points

Training Neural Networks

cost ℒ 𝜃

Very slow at the
plateau

Stuck at a local
minimum

𝛻ℒ 𝜃 = 0

Stuck at a saddle point

𝛻ℒ 𝜃
= 0

𝛻ℒ 𝜃 ≈ 0

𝜃
Slide credit: Hung-yi Lee – Deep Learning Tutorial

45

Gradient Descent with Momentum

• Gradient descent with momentum uses the momentum of the gradient for
parameter optimization

Training Neural Networks

Movement = Negative of Gradient +
Momentum

Gradient = 0

Negative of Gradient
Momentum
Real Movement

cost ℒ 𝜃

𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial

46

Gradient Descent with Momentum

• Parameters update in GD with momentum at iteration 𝑡: 𝜃𝑡 = 𝜃𝑡−1 − 𝑉𝑡

o Where: 𝑉𝑡= 𝛽𝑉𝑡−1 + 𝛼𝛻ℒ 𝜃𝑡−1

o I.e., 𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝛻ℒ 𝜃𝑡−1 − 𝛽𝑉𝑡−1

• Compare to vanilla GD: 𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝛻ℒ 𝜃𝑡−1

▪ Where 𝜃𝑡−1 are the parameters from the previous iteration 𝑡 − 1

• The term 𝑉𝑡 is called momentum

▪ This term accumulates the gradients from the past several steps, i.e.,

𝑉𝑡= 𝛽𝑉𝑡−1 + 𝛼𝛻ℒ 𝜃𝑡−1
= 𝛽 𝛽𝑉𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−1

= 𝛽2𝑉𝑡−2 + 𝛽𝛼𝛻ℒ 𝜃𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−1

= 𝛽3𝑉𝑡−3 + 𝛽2𝛼𝛻ℒ 𝜃𝑡−3 + 𝛽𝛼𝛻ℒ 𝜃𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−1

▪ This term is analogous to a momentum of a heavy ball rolling down the hill

• The parameter 𝛽 is referred to as a coefficient of momentum

▪ A typical value of the parameter 𝛽 is 0.9

• This method updates the parameters 𝜃 in the direction of the weighted average of
the past gradients

Training Neural Networks

47

Nesterov Accelerated Momentum

• Gradient descent with Nesterov accelerated momentum

▪ Parameter update: 𝜃𝑡 = 𝜃𝑡−1 − 𝑉𝑡

o Where: 𝑉𝑡= 𝛽𝑉𝑡−1 + 𝛼𝛻ℒ 𝜃𝑡−1 + 𝛽𝑉𝑡−1

▪ The term 𝜃𝑡−1 + 𝛽𝑉𝑡−1 allows to predict the position of the parameters in the next step
(i.e., 𝜃𝑡 ≈ 𝜃𝑡−1 + 𝛽𝑉𝑡−1)

▪ The gradient is calculated with respect to the approximate future position of the
parameters in the next iteration, 𝜃𝑡, calculated at iteration 𝑡 − 1

Training Neural Networks

Picture from: https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12

GD with
momentum

GD with
Nesterov

momentum

https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12

48

Adam

• Adaptive Moment Estimation (Adam)

▪ Adam combines insights from the momentum optimizers that accumulate the values of
past gradients, and it also introduces new terms based on the second moment of the
gradient

o Similar to GD with momentum, Adam computes a weighted average of past gradients (first
moment of the gradient), i.e., 𝑉𝑡= 𝛽1𝑉𝑡−1 + 1 − 𝛽1 𝛻ℒ 𝜃𝑡−1

o Adam also computes a weighted average of past squared gradients (second moment of the

gradient), , i.e., 𝑈𝑡= 𝛽2𝑈𝑡−1 + 1 − 𝛽2 𝛻ℒ 𝜃𝑡−1 2

▪ The parameter update is:𝜃𝑡 = 𝜃𝑡−1 − 𝛼
෠𝑉𝑡

෡𝑈𝑡+𝜖

o Where: ෠𝑉𝑡 =
𝑉𝑡

1−𝛽1
 and ෡𝑈𝑡 =

𝑈𝑡

1−𝛽2

o The proposed default values are 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8

• Other commonly used optimization methods include:

▪ Adagrad, Adadelta, RMSprop, Nadam, etc.

▪ Most commonly used optimizers nowadays are Adam and SGD with momentum

Training Neural Networks

49

Learning Rate

• Learning rate

▪ The gradient tells us the direction in which the loss has the steepest rate of increase, but it
does not tell us how far along the opposite direction we should step

▪ Choosing the learning rate (also called the step size) is one of the most important hyper-
parameter settings for NN training

Training Neural Networks

LR
too
small

LR
too
large

50

Learning Rate

• Training loss for different learning rates

▪ High learning rate: the loss increases or plateaus too quickly

▪ Low learning rate: the loss decreases too slowly (takes many epochs to reach a solution)

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/

51

Learning Rate Scheduling

• Learning rate scheduling is applied to change the values of the learning rate during
the training

▪ Annealing is reducing the learning rate over time (a.k.a. learning rate decay)

o Approach 1: reduce the learning rate by some factor every few epochs

• Typical values: reduce the learning rate by a half every 5 epochs, or divide by 10 every 20 epochs

o Approach 2: exponential or cosine decay gradually reduce the learning rate over time

o Approach 3: reduce the learning rate by a constant (e.g., by half) whenever the validation loss
stops improving

• In TensorFlow: tf.keras.callbacks.ReduceLROnPleateau()

• Monitor: validation loss, factor: 0.1 (i.e., divide by 10), patience: 10 (how many epochs to wait before applying it),
Minimum learning rate: 1e-6 (when to stop)

▪ Warmup is gradually increasing the learning rate initially, and afterward let it cool down
until the end of the training

Training Neural Networks

Exponential decay Cosine decay Warmup

52

Vanishing Gradient Problem

• In some cases, during training, the gradients can become either very small
(vanishing gradients) of very large (exploding gradients)

▪ They result in very small or very large update of the parameters

▪ Solutions: change learning rate, ReLU activations, regularization, LSTM units in RNNs

Training Neural Networks

1x

2x

……

Nx

…… …… ……
…
…
…
…

…
…

……

y1

y2

yM

Small gradients, learns very slow

Slide credit: Hung-yi Lee – Deep Learning Tutorial

53

Generalization

• Underfitting

▪ The model is too “simple” to represent
all the relevant class characteristics

▪ E.g., model with too few parameters

▪ Produces high error on the training set
and high error on the validation set

• Overfitting

▪ The model is too “complex” and fits
irrelevant characteristics (noise) in the
data

▪ E.g., model with too many parameters

▪ Produces low error on the training error
and high error on the validation set

Generalization

54

Overfitting

• Overfitting – a model with high capacity fits the noise in the data instead of the
underlying relationship

Generalization

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

• The model may fit the training data
very well, but fails to generalize to new
examples (test or validation data)

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

55

Regularization: Weight Decay

• ℓ𝟐 weight decay

▪ A regularization term that penalizes large weights is added to the loss function

ℒ𝑟𝑒𝑔 𝜃 = ℒ 𝜃 + 𝜆 ෍

𝑘

𝜃𝑘
2

▪ For every weight in the network, we add the regularization term to the loss value

o During gradient descent parameter update, every weight is decayed linearly toward zero

▪ The weight decay coefficient 𝜆 determines how dominant the regularization is during the
gradient computation

Regularization

Data loss Regularization loss

56

Regularization: Weight Decay

• Effect of the decay coefficient 𝜆

▪ Large weight decay coefficient → penalty for weights with large values

Regularization

57

Regularization: Weight Decay

• ℓ𝟏 weight decay

▪ The regularization term is based on the ℓ1 norm of the weights

ℒ𝑟𝑒𝑔 𝜃 = ℒ 𝜃 + 𝜆 σ𝑘 𝜃𝑘

▪ ℓ1 weight decay is less common with NN

o Often performs worse than ℓ2 weight decay

▪ It is also possible to combine ℓ1 and ℓ2 regularization

o Called elastic net regularization

ℒ𝑟𝑒𝑔 𝜃 = ℒ 𝜃 + 𝜆1 σ𝑘 𝜃𝑘 + 𝜆2 σ𝑘 𝜃𝑘
2

Regularization

58

Regularization: Dropout

• Dropout

▪ Randomly drop units (along with their connections) during training

▪ Each unit is retained with a fixed dropout rate p, independent of other units

▪ The hyper-parameter p needs to be chosen (tuned)

o Often, between 20% and 50% of the units are dropped

Regularization

Slide credit: Hung-yi Lee – Deep Learning Tutorial

59

Regularization: Dropout

• Dropout is a kind of ensemble learning

▪ Using one mini-batch to train one network with a slightly different architecture

Regularization

minibatc
h
1

minibatc
h
2

minibatc
h
3

minibatc
h
n

…
…

Slide credit: Hung-yi Lee – Deep Learning Tutorial

60

Regularization: Early Stopping

• Early-stopping

▪ During model training, use a validation set

o E.g., validation/train ratio of about 25% to 75%

▪ Stop when the validation accuracy (or loss) has not improved after n epochs

o The parameter n is called patience

Regularization

Stop training

validation

61

Batch Normalization

• Batch normalization layers act similar to the data preprocessing steps mentioned
earlier

▪ They calculate the mean μ and variance σ of a batch of input data, and normalize the
data x to a zero mean and unit variance

▪ I.e., ො𝑥 =
𝑥−𝜇

𝜎

• BatchNorm layers alleviate the problems of proper initialization of the parameters
and hyper-parameters

▪ Result in faster convergence training, allow larger learning rates

▪ Reduce the internal covariate shift

• BatchNorm layers are inserted immediately after convolutional layers or fully-
connected layers, and before activation layers

▪ They are very common with convolutional NNs

Regularization

62

Hyper-parameter Tuning

• Training NNs can involve setting many hyper-parameters

• The most common hyper-parameters include:

▪ Number of layers, and number of neurons per layer

▪ Initial learning rate

▪ Learning rate decay schedule (e.g., decay constant)

▪ Optimizer type

• Other hyper-parameters may include:

▪ Regularization parameters (ℓ2 penalty, dropout rate)

▪ Batch size

▪ Activation functions

▪ Loss function

• Hyper-parameter tuning can be time-consuming for larger NNs

Hyper-parameter Tuning

63

Hyper-parameter Tuning

• Grid search

▪ Check all values in a range with a step value

• Random search

▪ Randomly sample values for the parameter

▪ Often preferred to grid search

• Bayesian hyper-parameter optimization

▪ Is an active area of research

Hyper-parameter Tuning

64

k-Fold Cross-Validation

• Using k-fold cross-validation for hyper-parameter tuning is common when the
size of the training data is small

▪ It also leads to a better and less noisy estimate of the model performance by averaging
the results across several folds

• E.g., 5-fold cross-validation (see the figure on the next slide)

1. Split the train data into 5 equal folds

2. First use folds 2-5 for training and fold 1 for validation

3. Repeat by using fold 2 for validation, then fold 3, fold 4, and fold 5

4. Average the results over the 5 runs (for reporting purposes)

5. Once the best hyper-parameters are determined, evaluate the model on the test data

k-Fold Cross-Validation

65

k-Fold Cross-Validation

• Illustration of a 5-fold cross-validation

k-Fold Cross-Validation

Picture from: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

66

Ensemble Learning

• Ensemble learning is training multiple classifiers separately and combining their
predictions

▪ Ensemble learning often outperforms individual classifiers

▪ Better results obtained with higher model variety in the ensemble

▪ Bagging (bootstrap aggregating)

o Randomly draw subsets from the training set (i.e., bootstrap samples)

o Train separate classifiers on each subset of the training set

o Perform classification based on the average vote of all classifiers

▪ Boosting

o Train a classifier, and apply weights on the training set (apply higher weights on misclassified
examples, focus on “hard examples”)

o Train new classifier, reweight training set according to prediction error

o Repeat

o Perform classification based on weighted vote of the classifiers

Ensemble Learning

67

Deep vs Shallow Networks

• Deeper networks perform better than shallow networks

▪ But only up to some limit: after a certain number of layers, the performance of deeper
networks plateaus

Deep vs Shallow Networks

Slide credit: Hung-yi Lee – Deep Learning Tutorial

1x 2x ……
Nx

……

Shallow
NN

input

output

Deep
NN

68

Convolutional Neural Networks (CNNs)

• Convolutional neural networks (CNNs) were primarily designed for image data

• CNNs use a convolutional operator for extracting data features

▪ Allows parameter sharing

▪ Efficient to train

▪ Have less parameters than NNs with fully-connected layers

• CNNs are robust to spatial translations of objects in images

• A convolutional filter slides (i.e., convolves) across the image

Convolutional Neural Networks

Input matrix
Convolutional

3x3 filter

Picture from: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

69

Convolutional Neural Networks (CNNs)

• When the convolutional filters are scanned over the image, they capture useful
features

▪ E.g., edge detection by convolutions

Convolutional Neural Networks

Filter

1 1 1 1 1 1 0.015686 0.015686 0.011765 0.015686 0.015686 0.015686 0.015686 0.964706 0.988235 0.964706 0.866667 0.031373 0.023529 0.007843

0.007843 0.741176 1 1 0.984314 0.023529 0.019608 0.015686 0.015686 0.015686 0.011765 0.101961 0.972549 1 1 0.996078 0.996078 0.996078 0.058824 0.015686

0.019608 0.513726 1 1 1 0.019608 0.015686 0.015686 0.015686 0.007843 0.011765 1 1 1 0.996078 0.031373 0.015686 0.019608 1 0.011765

0.015686 0.733333 1 1 0.996078 0.019608 0.019608 0.015686 0.015686 0.011765 0.984314 1 1 0.988235 0.027451 0.015686 0.007843 0.007843 1 0.352941

0.015686 0.823529 1 1 0.988235 0.019608 0.019608 0.015686 0.015686 0.019608 1 1 0.980392 0.015686 0.015686 0.015686 0.015686 0.996078 1 0.996078

0.015686 0.913726 1 1 0.996078 0.019608 0.019608 0.019608 0.019608 1 1 0.984314 0.015686 0.015686 0.015686 0.015686 0.952941 1 1 0.992157

0.019608 0.913726 1 1 0.988235 0.019608 0.019608 0.019608 0.039216 0.996078 1 0.015686 0.015686 0.015686 0.015686 0.996078 1 1 1 0.007843

0.019608 0.898039 1 1 0.988235 0.019608 0.015686 0.019608 0.968628 0.996078 0.980392 0.027451 0.015686 0.019608 0.980392 0.972549 1 1 1 0.019608

0.043137 0.905882 1 1 1 0.015686 0.035294 0.968628 1 1 0.023529 1 0.792157 0.996078 1 1 0.980392 0.992157 0.039216 0.023529

1 1 1 1 1 0.992157 0.992157 1 1 0.984314 0.015686 0.015686 0.858824 0.996078 1 0.992157 0.501961 0.019608 0.019608 0.023529

0.996078 0.992157 1 1 1 0.933333 0.003922 0.996078 1 0.988235 1 0.992157 1 1 1 0.988235 1 1 1 1

0.015686 0.74902 1 1 0.984314 0.019608 0.019608 0.031373 0.984314 0.023529 0.015686 0.015686 1 1 1 0 0.003922 0.027451 0.980392 1

0.019608 0.023529 1 1 1 0.019608 0.019608 0.564706 0.894118 0.019608 0.015686 0.015686 1 1 1 0.015686 0.015686 0.015686 0.05098 1

0.015686 0.015686 1 1 1 0.047059 0.019608 0.992157 0.007843 0.011765 0.011765 0.015686 1 1 1 0.015686 0.019608 0.996078 0.023529 0.996078

0.019608 0.015686 0.243137 1 1 0.976471 0.035294 1 0.003922 0.011765 0.011765 0.015686 1 1 1 0.988235 0.988235 1 0.003922 0.015686

0.019608 0.019608 0.027451 1 1 0.992157 0.223529 0.662745 0.011765 0.011765 0.011765 0.015686 1 1 1 0.015686 0.023529 0.996078 0.011765 0.011765

0.015686 0.015686 0.011765 1 1 1 1 0.035294 0.011765 0.011765 0.011765 0.015686 1 1 1 0.015686 0.015686 0.964706 0.003922 0.996078

0.007843 0.019608 0.011765 0.054902 1 1 0.988235 0.007843 0.011765 0.011765 0.015686 0.011765 1 1 1 0.015686 0.015686 0.015686 0.023529 1

0.007843 0.007843 0.015686 0.015686 0.960784 1 0.490196 0.015686 0.015686 0.015686 0.007843 0.027451 1 1 1 0.011765 0.011765 0.043137 1 1

0.023529 0.003922 0.007843 0.023529 0.980392 0.976471 0.039216 0.019608 0.007843 0.019608 0.015686 1 1 1 1 1 1 1 1 1

0 1 0

1 -4

1

0 1 0

Input Image Convoluted

Image

Slide credit: Param Vir Singh – Deep Learning

70

Convolutional Neural Networks (CNNs)

• In CNNs, hidden units in a layer are only connected to a small region of the layer
before it (called local receptive field)

▪ The depth of each feature map corresponds to the number of convolutional filters used at
each layer

Convolutional Neural Networks

Input Image

Layer 1

Feature Map Layer 2

Feature Map

w1 w2

w3 w4 w5 w6

w7 w8
Filter 1

Filter 2

Slide credit: Param Vir Singh – Deep Learning

71

Convolutional Neural Networks (CNNs)

• Max pooling: reports the maximum output within a rectangular neighborhood

• Average pooling: reports the average output of a rectangular neighborhood

• Pooling layers reduce the spatial size of the feature maps

▪ Reduce the number of parameters, prevent overfitting

Convolutional Neural Networks

1 3 5 3

4 2 3 1

3 1 1 3

0 1 0 4

MaxPool with a 2×2 filter with stride of 2

Input
Matrix

Output
Matrix

4 5

3 4

Slide credit: Param Vir Singh – Deep Learning

72

Convolutional Neural Networks (CNNs)

• Feature extraction architecture

▪ After 2 convolutional layers, a max-pooling layer reduces the size of the feature maps
(typically by 2)

▪ A fully convolutional and a softmax layers are added last to perform classification

Convolutional Neural Networks

6
4

6
4

1
2
8

1
2
8

2
5
6

2
5
6

2
5
6

5
1
2

5
1
2

5
1
2

5
1
2

5
1
2

5
1
2

C
o

n
v
 l
ay

er

M
ax

 P
o

o
l

Fully Connected Layer

Living Room

Bedroom

Kitchen

Bathroom

Outdoor

Slide credit: Param Vir Singh – Deep Learning

73

Residual CNNs

• Residual networks (ResNets)

▪ Introduce “identity” skip connections

o Layer inputs are propagated and added to the layer output

o Mitigate the problem of vanishing gradients during training

o Allow training very deep NN (with over 1,000 layers)

▪ Several ResNet variants exist: 18, 34, 50, 101, 152, and 200 layers

▪ Are used as base models of other state-of-the-art NNs

o Other similar models: ResNeXT, DenseNet

Convolutional Neural Networks

74

Recurrent Neural Networks (RNNs)

• Recurrent NNs are used for modeling sequential data and data with varying length
of inputs and outputs

▪ Videos, text, speech, DNA sequences, human skeletal data

• RNNs introduce recurrent connections between the neurons

▪ This allows processing sequential data one element at a time by selectively passing
information across a sequence

▪ Memory of the previous inputs is stored in the model’s internal state and affect the
model predictions

▪ Can capture correlations in sequential data

• RNNs use backpropagation-through-time for training

• RNNs are more sensitive to the vanishing gradient problem than CNNs

Recurrent Neural Networks

75

Recurrent Neural Networks (RNNs)

• RNN use same set of weights 𝑤ℎ and 𝑤𝑥 across all time steps

▪ A sequence of hidden states ℎ𝑜 , ℎ𝑜ℎ2, ℎ3, … is learned, which represents the memory of
the network

▪ The hidden state at step t, ℎ 𝑡 , is calculated based on the previous hidden state ℎ 𝑡 − 1
and the input at the current step 𝑥 𝑡 , i.e., ℎ 𝑡 = 𝑓ℎ 𝑤ℎ ∗ ℎ 𝑡 − 1 + 𝑤𝑥 ∗ 𝑥 𝑡

▪ The function 𝑓ℎ ∙ is a nonlinear activation function, e.g., ReLU or tanh

• RNN shown rolled over time

Recurrent Neural Networks

x1

h0 𝑓ℎ(·)
𝑤ℎ

𝑤𝑥

h1

x2

𝑓ℎ(·)
𝑤ℎ

𝑤𝑥

h2

x3

𝑓ℎ(·)
𝑤ℎ

𝑤𝑥

h3 𝑓𝑦(·)
𝑤𝑦

OUTPUT

Slide credit: Param Vir Singh – Deep Learning

INPUT SEQUENCE: 𝑥1, 𝑥2, 𝑥3, … .

HIDDEN STATES SEQUENCE:
ℎ𝑜 , ℎ1, ℎ2, ℎ3, … .

76

Recurrent Neural Networks (RNNs)

• RNNs can have one of many inputs and one of many outputs

Recurrent Neural Networks

A person riding a
motorbike on dirt
road

Awesome movie. Highly
recommended. Positive

Happy Diwali शुभ दीपावली

Image
Captioning

Sentiment
Analysis

Machine
Translation

RNN Application Input Output

Slide credit: Param Vir SIngh– Deep Learning

77

Bidirectional RNNs

• Bidirectional RNNs incorporate both forward and backward passes through
sequential data

▪ The output may not only depend on the previous elements in the sequence, but also on
future elements in the sequence

▪ It resembles two RNNs stacked on top of each other

Recurrent Neural Networks

ℎ𝑡 = 𝜎(𝑊(ℎℎ)ℎ𝑡+1 + 𝑊(ℎ𝑥)𝑥𝑡)

ℎ𝑡 = 𝜎(𝑊(ℎℎ)ℎ𝑡−1 + 𝑊(ℎ𝑥)𝑥𝑡)

𝑦𝑡 = 𝑓 ℎ𝑡; ℎ𝑡

Outputs both past and future elements

Slide credit: Param Vir Singh – Deep Learning

78

LSTM Networks

• Long Short-Term Memory (LSTM) networks are a variant of RNNs

• LSTM mitigates the vanishing/exploding gradient problem

▪ Solution: a Memory Cell, updated at each step in the sequence

• Three gates control the flow of information to and from the Memory Cell

▪ Input Gate: protects the current step from irrelevant inputs

▪ Output Gate: prevents current step from passing irrelevant information to later steps

▪ Forget Gate: limits information passed from one cell to the next

• Most modern RNN models use either LSTM units or other more advanced types of
recurrent units (e.g., GRU units)

Recurrent Neural Networks

79

LSTM Networks

• LSTM cell

▪ Input gate, output gate, forget gate, memory cell

▪ LSTM can learn long-term correlations within data sequences

Recurrent Neural Networks

The Encoder-Decoder Model with RNNs

• We introduce a new model, the encoder-decoder model, which is
used when we are taking an input sequence and translating it to an
output sequence x that is of a different length than the input, and
doesn’t align with it in a word-to-word way.

• Encoder-decoder models are used especially for tasks like machine
translation, where the input sequence and output sequence can
have different lengths and the mapping between a token in the input
and a token in the output can be very indirect (in some languages the
verb appears at the beginning of the sentence; in other languages at
the end.)

• Encoder-decoder networks, sometimes called sequence-to-
sequence networks, are models capable of generating contextually
appropriate, arbitrary length, output sequences given an input
sequence. Encoder-decoder networks have been applied to a very
wide range of applications including summarization, question
answering, and dialogue, but they are particularly popular for
machine translation.

80

Demo: Chat-bot

Sequence-to-sequence
Auto-encoder

RNN Decoder
x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3
x4

RNN Encoder

audio segment

acoustic features

The RNN encoder and
decoder are jointly trained.

Input acoustic features

The encoder-decoder architecture

• The key idea underlying these networks is the use of an encoder network that
takes an input sequence and creates a contextualized representation of it, often
called the context. This representation is then passed to a decoder which
generates a task specific output sequence. Fig. 9.16 illustrates the architecture.

83

A translation model using an
encoder-decoder

84

A translation model using an encoder-
decoder
• To translate a source text, we run it

through the network performing
forward inference to generate hidden
states until we get to the end of the
source.

• Then we begin autoregressive
generation, asking for a word in the
context of the hidden layer from the
end of the source input as well as the
end-of-sentence marker.

• Subsequent words are conditioned
on the previous hidden state and the
embedding for the last word
generated.

85

A translation model using an
encoder-decoder

• The entire purpose of the encoder is to generate a contextualized representation of the input. This
representation is embodied in the final hidden state of the encoder, ℎ𝑛

𝑒 . This representation, also called c for
context, is then passed to the decoder.

• The decoder network on the right takes this state and uses it to initialize the first hidden state of the decoder.
That is, the first decoder RNN cell uses c as its prior hidden state ℎ0

𝑑 .

• The decoder autoregressively generates a sequence of outputs, an element at a time, until an end-of-
sequence marker is generated. Each hidden state is conditioned on the previous hidden state and the output
generated in the previous state.

86

Training the Encoder-Decoder Model

• Encoder-decoder architectures are trained end-to-end,
just as with the RNN language models of Chapter 9.

• Each training example is a tuple of paired strings, a
source and a target. Concatenated with a separator
token, these source-target pairs can now serve as
training data.

• For MT, the training data typically consists of sets of
sentences and their translations. These can be drawn
from standard datasets of aligned sentence pairs.

87

Training the Encoder-Decoder
Model

• The network is given the source text and then starting with the separator token is
trained autoregressively to predict the next word, as shown in Fig. 9.20.

• The decoder during inference uses its own estimated output. Thus the decoder will
tend to deviate more and more from the gold target sentence as it keeps generating
teacher forcing more tokens.

• In training, therefore, it is more common to use teacher forcing in the decoder.

• Teacher forcing means that we force the system to use the gold target token from

training as the next input xt+1, rather than allowing it to rely on the (possibly

erroneous) decoder output ො𝑦𝑡. This speeds up training.

88

Training the Encoder-Decoder Model

89

Attention

• For many applications, it helps to add “attention” to RNNs.

• Allows network to learn to attend to different parts of the
input at different time steps, shifting its attention to focus on
different aspects during its processing.

• Used in image captioning to focus on different parts of an
image when generating different parts of the output
sentence.

• In MT, allows focusing attention on different parts of the
source sentence when generating different parts of the
translation.

90

Attention for Image Captioning
(Xu, et al. 2015)

91

Attention
• The simplicity of the encoder-decoder model is its clean separation of the encoder— which builds a representation of the source

text—from the decoder, which uses this context to generate a target text.

• In the model as we’ve described it so far, this context vector is hn, the hidden state of the last (nth) time step of the source text.

• This final hidden state is thus acting as a bottleneck: it must represent absolutely everything about the meaning of the source
text, since the only thing the decoder knows about the source text is what’s in this context vector (Fig. 9.21).

• Information at the beginning of the sentence, especially for long sentences, may not be equally well represented in the context vector.

92

Attention definition

•A mechanism for helping compute the embedding
for a token by selectively attending to and
integrating information from surrounding tokens
(at the previous layer).

•More formally: a method for doing a weighted
sum of vectors.

Attention Mechanism

94

Multihead Attention
• The different words in a sentence can relate to each other in many

different ways simultaneously. For example, distinct syntactic,
semantic, and discourse relationships can hold between verbs and
their arguments in a sentence.

• It would be difficult for a single transformer block to learn to capture all
of the different kinds of parallel relations among its inputs.

• Transformers address this issue with multihead self-attention layers.
• These are sets of self-attention layers, called heads, that reside in

parallel layers at the same depth in a model, each with its own set of
parameters.

• Given these distinct sets of parameters, each head can learn different
aspects of the relationships that exist among inputs at the same level of
abstraction.

95

Multihead Attention

Source:
https://jalammar.github.io/il
lustrated-transformer/

96

HEAD 1: As we are encoding the word "it" in encoder
#5 (the top encoder in the stack), part of the
attention mechanism was focusing on "The Animal",
and baked a part of its representation into the
encoding of "it".

HEAD 2: As we encode the word "it", one attention head is
focusing most on "the animal", while another is focusing on
"tired" -- in a sense, the model's representation of the word "it"
bakes in some of the representation of both "animal" and
"tired".

97

Transformers

• Transformers map sequences of input vectors (x1….,xn) to sequences of output vectors
(y1,…,yn) of the same length.

• Transformers are made up of stacks of transformer blocks, each of which is a multilayer
network made by combining simple linear layers, feedforward networks, and self-
attention layers, the key innovation of transformers.

• Self-attention allows a network to directly extract and use information from arbitrarily large
contexts without the need to pass it through intermediate recurrent connections as in RNNs.

Summary

98

Transformers as Language Models
• We’ve seen all the major components of transformers, let’s examine how to deploy them as language models via self-

supervised learning.

• Given a training corpus of plain text we’ll in a sequence yt , using cross-entropy loss. train the model autoregressively
to predict the next token (Recall from Section 9.3.3 that using a language model to incrementally generate words by repeatedly sampling the next word conditioned
on our previous choices is called autoregressive generation or causal LM generation.)

• Fig. 10.7 illustrates the general training approach. At each step, given all the preceding words, the final transformer
layer produces an output distribution over the entire vocabulary. During training, the probability assigned to the
correct word is used to calculate the cross-entropy loss for each item in the sequence

99

Explosion of Pre-trained LMs

100

101

References

1. Hung-yi Lee – Deep Learning Tutorial

2. Ismini Lourentzou – Introduction to Deep Learning

3. CS231n Convolutional Neural Networks for Visual Recognition (Stanford CS
course) (link)

4. James Hays, Brown – Machine Learning Overview

5. Param Vir Singh, Shunyuan Zhang, Nikhil Malik – Deep Learning

6. Sebastian Ruder – An Overview of Gradient Descent Optimization Algorithms
(link)

https://cs231n.github.io/
https://ruder.io/optimizing-gradient-descent/

	Slide 1: Artificial Intelligence for Medicine II
	Slide 2: Lecture Outline
	Slide 3: ML vs. Deep Learning
	Slide 4: ML vs. Deep Learning
	Slide 5: ML vs. Deep Learning
	Slide 6: Why is DL Useful?
	Slide 7: Representational Power
	Slide 8: Introduction to Neural Networks
	Slide 9: Introduction to Neural Networks
	Slide 10: Elements of Neural Networks
	Slide 11: Elements of Neural Networks
	Slide 12: Elements of Neural Networks
	Slide 13: Elements of Neural Networks
	Slide 14: Elements of Neural Networks
	Slide 15: Elements of Neural Networks
	Slide 16: Matrix Operation
	Slide 17: Matrix Operation
	Slide 18: Matrix Operation
	Slide 19: Matrix Operation
	Slide 20: Softmax Layer
	Slide 21: Softmax Layer
	Slide 22: Activation Functions
	Slide 23: Activation: Sigmoid
	Slide 24: Activation: Tanh
	Slide 25: Activation: ReLU
	Slide 26: Activation: Leaky ReLU
	Slide 27: Activation: Linear Function
	Slide 28: Training NNs
	Slide 29: Training NNs
	Slide 30: Training NNs
	Slide 31: Training NNs
	Slide 32: Training NNs
	Slide 33: Loss Functions
	Slide 34: Loss Functions
	Slide 35: Training NNs
	Slide 36: Gradient Descent Algorithm
	Slide 37: Gradient Descent Algorithm
	Slide 38: Gradient Descent Algorithm
	Slide 39: Gradient Descent Algorithm
	Slide 40: Gradient Descent Algorithm
	Slide 41: Backpropagation
	Slide 42: Mini-batch Gradient Descent
	Slide 43: Stochastic Gradient Descent
	Slide 44: Problems with Gradient Descent
	Slide 45: Gradient Descent with Momentum
	Slide 46: Gradient Descent with Momentum
	Slide 47: Nesterov Accelerated Momentum
	Slide 48: Adam
	Slide 49: Learning Rate
	Slide 50: Learning Rate
	Slide 51: Learning Rate Scheduling
	Slide 52: Vanishing Gradient Problem
	Slide 53: Generalization
	Slide 54: Overfitting
	Slide 55: Regularization: Weight Decay
	Slide 56: Regularization: Weight Decay
	Slide 57: Regularization: Weight Decay
	Slide 58: Regularization: Dropout
	Slide 59: Regularization: Dropout
	Slide 60: Regularization: Early Stopping
	Slide 61: Batch Normalization
	Slide 62: Hyper-parameter Tuning
	Slide 63: Hyper-parameter Tuning
	Slide 64: k-Fold Cross-Validation
	Slide 65: k-Fold Cross-Validation
	Slide 66: Ensemble Learning
	Slide 67: Deep vs Shallow Networks
	Slide 68: Convolutional Neural Networks (CNNs)
	Slide 69: Convolutional Neural Networks (CNNs)
	Slide 70: Convolutional Neural Networks (CNNs)
	Slide 71: Convolutional Neural Networks (CNNs)
	Slide 72: Convolutional Neural Networks (CNNs)
	Slide 73: Residual CNNs
	Slide 74: Recurrent Neural Networks (RNNs)
	Slide 75: Recurrent Neural Networks (RNNs)
	Slide 76: Recurrent Neural Networks (RNNs)
	Slide 77: Bidirectional RNNs
	Slide 78: LSTM Networks
	Slide 79: LSTM Networks
	Slide 80: The Encoder-Decoder Model with RNNs
	Slide 81: Demo: Chat-bot
	Slide 82: Sequence-to-sequence Auto-encoder
	Slide 83: The encoder-decoder architecture
	Slide 84: A translation model using an encoder-decoder
	Slide 85: A translation model using an encoder-decoder
	Slide 86: A translation model using an encoder-decoder
	Slide 87: Training the Encoder-Decoder Model
	Slide 88: Training the Encoder-Decoder Model
	Slide 89: Training the Encoder-Decoder Model
	Slide 90: Attention
	Slide 91: Attention for Image Captioning (Xu, et al. 2015)
	Slide 92: Attention
	Slide 93: Attention definition
	Slide 94: Attention Mechanism
	Slide 95: Multihead Attention
	Slide 96: Multihead Attention
	Slide 97: Transformers
	Slide 98: Summary
	Slide 99: Transformers as Language Models
	Slide 100: Explosion of Pre-trained LMs
	Slide 101: References

