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Lecture Outline

• ML vs. Deep Learning

• Introduction to NNs (Neural Networks)

• NN architectures

▪ Convolutional NNs

▪ Recurrent NNs

▪ Encoder-Decoder NNs

▪ Transformers
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ML vs. Deep Learning

• Conventional machine learning methods rely on human-designed feature 
representations

▪ ML becomes just optimizing weights to best make a final prediction

Introduction to Deep Learning

Picture from: Ismini Lourentzou – Introduction to Deep Learning
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ML vs. Deep Learning

• Deep learning (DL) is a machine learning subfield that uses multiple layers for 
learning data representations

▪ DL is exceptionally effective at learning patterns

Introduction to Deep Learning

Picture from: https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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ML vs. Deep Learning

• DL applies a multi-layer process for learning rich hierarchical  features (i.e., data 
representations)

▪ Input image pixels → Edges → Textures → Parts → Objects

Introduction to Deep Learning
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Why is DL Useful?

• DL provides a flexible, learnable framework for representing visual, text, linguistic 
information

▪ Can learn in supervised and unsupervised manner

• DL represents an effective end-to-end learning system

• Requires large amounts of training data

• Since about 2010, DL has outperformed other ML techniques

▪ First in vision and speech, then NLP, and other applications

Introduction to Deep Learning
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Representational Power

• NNs with at least one hidden layer are universal approximators

▪ Given any continuous function h(x) and some 𝜖 > 0, there exists a NN with one 
hidden layer (and with a reasonable choice of non-linearity) described with the 
function f(x), such that ∀𝑥, ℎ 𝑥 − 𝑓(𝑥) < 𝜖

▪ I.e., NN can approximate any arbitrary complex continuous function

Introduction to Deep Learning

• NNs use nonlinear mapping of the inputs x to the 
outputs f(x) to compute complex decision boundaries

• But then, why use deeper NNs?

▪ The fact that deep NNs work better is an empirical 
observation

▪ Mathematically, deep NNs have the same 
representational power as a one-layer NN
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Introduction to Neural Networks 

• Handwritten digit recognition (MNIST dataset)

▪ The intensity of each pixel is considered an input element

▪ Output is the class of the digit

Introduction to Neural Networks
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Introduction to Neural Networks 

• Handwritten digit recognition

Introduction to Neural Networks
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Elements of Neural Networks 

• NNs consist of hidden layers with neurons (i.e., computational units)

• A single neuron maps a set of inputs into an output number, or 𝑓: 𝑅𝐾 → 𝑅

Introduction to Neural Networks
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Elements of Neural Networks 

• A NN with one hidden layer and one output layer

Introduction to Neural Networks
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Activation functions

4 + 2 = 6 neurons (not counting inputs)
[3 × 4] + [4 × 2] = 20 weights 

4 + 2 = 6 biases
26 learnable parameters

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Elements of Neural Networks 

• A neural network playground link

Introduction to Neural Networks

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.45430&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
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Elements of Neural Networks 

• Deep NNs have many hidden layers

▪ Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)

▪ Each neuron is connected to all neurons in the succeeding layer

Introduction to Neural Networks
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Elements of Neural Networks 

• A simple network, toy example

Introduction to Neural Networks
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Elements of Neural Networks 

• A simple network, toy example (cont’d)

▪ For an input vector [1 −1]𝑇, the output is [0.62 0.83]𝑇

Introduction to Neural Networks
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Matrix Operation

• Matrix operations are helpful when working with multidimensional inputs and 
outputs

Introduction to Neural Networks

1

-
2

1

-1

1

0

4

-2

0.98

0.12

1

-1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

𝜎  
1

−1
1 −2

−1 1 +
1
0

0.98
0.12=

4
−2

bW x +𝜎  = a



17

Matrix Operation

• Multilayer NN, matrix calculations for the first layer

▪ Input vector x, weights matrix W1, bias vector b1, output vector a1

Introduction to Neural Networks
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Matrix Operation

• Multilayer NN, matrix calculations for all layers

Introduction to Neural Networks
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Matrix Operation

• Multilayer NN, function f maps inputs x to outputs y, i.e., 𝑦 = 𝑓(𝑥)

Introduction to Neural Networks
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Softmax Layer

• In multi-class classification tasks, the output layer is typically a softmax layer

▪ I.e., it employs a softmax activation function

▪ If a layer with a sigmoid activation function is used as the output layer instead, the 
predictions by the NN may not be easy to interpret

o Note that an output layer with sigmoid activations can still be used for binary classification 

Introduction to Neural Networks

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Softmax Layer

• The softmax layer applies softmax activations to output 
a probability value in the range [0, 1]

▪ The values z inputted to the softmax layer are referred to as 
logits

Introduction to Neural Networks
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Activation Functions

• Non-linear activations are needed to learn complex (non-linear) data 
representations

▪ Otherwise, NNs would be just a linear function (such as W1W2𝑥 = 𝑊𝑥) 

▪ NNs with large number of layers (and neurons) can approximate more complex 
functions 

o Figure: more neurons improve representation (but, may overfit)

Introduction to Neural Networks

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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Activation: Sigmoid

• Sigmoid function σ: takes a real-valued number and “squashes” it into the range 
between 0 and 1

▪ The output can be interpreted as the firing rate of a biological neuron

o Not firing = 0; Fully firing = 1

▪ When the neuron’s activation are 0 or 1, sigmoid neurons saturate

o Gradients at these regions are almost zero (almost no signal will flow) 

▪ Sigmoid activations are less common in modern NNs

Introduction to Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Activation: Tanh

• Tanh function: takes a real-valued number and “squashes” it into range between -1 
and 1

▪ Like sigmoid, tanh neurons saturate

▪ Unlike sigmoid, the output is zero-centered

o It is therefore preferred than sigmoid

▪ Tanh is a scaled sigmoid: tanh(𝑥) = 2 ∙ 𝜎(2𝑥) − 1

Introduction to Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Activation: ReLU

• ReLU (Rectified Linear Unit): takes a real-valued number and thresholds it at zero

 𝑓 𝑥 =  max(0, 𝑥)

Introduction to Neural Networks

▪ Most modern deep NNs use ReLU 
activations 

▪ ReLU is fast to compute 

o Compared to sigmoid, tanh 

o Simply threshold a matrix at zero

▪ Accelerates the convergence of gradient 
descent

o Due to linear, non-saturating form 

▪ Prevents the gradient vanishing problem

ℝ𝑛 → ℝ+
𝑛

𝑥

𝑓 𝑥
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Activation: Leaky ReLU

• The problem of ReLU activations: they can “die”

▪ ReLU could cause weights to update  in a way that the gradients can become zero and 
the neuron will not activate again on any data 

▪ E.g., when a large learning rate is used

• Leaky ReLU activation function is a variant of ReLU
▪ Instead of the function being 0 when 𝑥 < 0, a leaky ReLU has a small negative slope (e.g., 

α = 0.01, or similar)

Introduction to Neural Networks

𝑓 𝑥

= ቊ
𝛼𝑥 for 𝑥 < 0 

𝑥 for 𝑥 ≫ 0

▪ This resolves the dying ReLU problem

▪ Most current works still use ReLU

o With a proper setting of the learning rate, 
the problem of dying ReLU can be 
avoided



27

Activation: Linear Function

• Linear function means that the output signal is proportional to the input signal to 
the neuron

Introduction to Neural Networks

𝑓 𝑥 = 𝑐𝑥

ℝ𝑛 → ℝ𝑛

▪ If the value of the constant c is 1, it is also 
called identity activation function

▪ This activation type is used in regression 
problems

o E.g., the last layer can have linear 
activation function, in order to output a 
real number (and not a class membership)
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Training NNs

• The network parameters 𝜃 include the weight matrices and bias vectors from all 
layers

▪ Often, the model parameters 𝜃 are referred to as weights

• Training a model to learn a set of parameters 𝜃 that are optimal (according to a 
criterion) is one of the greatest challenges in ML

Training Neural Networks
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Training NNs

• Data preprocessing - helps convergence during training

▪ Mean subtraction, to obtain zero-centered data

o Subtract the mean for each individual data dimension (feature)

▪ Normalization

o Divide each feature by its standard deviation

• To obtain standard deviation of 1 for each data dimension (feature)

o Or, scale the data within the range [0,1] or [-1, 1]

• E.g., image pixel intensities are divided by 255 to be scaled in the [0,1] range

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-2/

https://cs231n.github.io/neural-networks-2/
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Training NNs

• To train a NN, set the parameters 𝜃 such that for a training subset of images, the 
corresponding elements in the predicted output have maximum values

Training Neural Networks
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Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Training NNs

• Define a loss function/objective function/cost function ℒ 𝜃  that calculates the 
difference (error) between the model prediction and the true label

▪ E.g., ℒ 𝜃  can be mean-squared error, cross-entropy, etc.

Training Neural Networks
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Training NNs

• For a training set of 𝑁 images, calculate the total loss overall all images: ℒ 𝜃 =
σ𝑛=1

𝑁 ℒ𝑛 𝜃

• Find the optimal parameters 𝜃∗ that minimize the total loss ℒ 𝜃

Training Neural Networks

x1

x2

xN

NN

NN

NN

…
…

…
…

y1

y
2

yN

ො𝑦1

ො𝑦2

ො𝑦𝑁

ℒ1 𝜃

…
…

…
…

x3 NN y3ො𝑦3

ℒ2 𝜃

ℒ3 𝜃

ℒ𝑛 𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial



33

Loss Functions

• Classification tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Loss Functions

• Regression tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning
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Training NNs

• Optimizing the loss function ℒ 𝜃  

▪ Almost all DL models these days are trained with a variant of the gradient descent (GD) 
algorithm

▪ GD applies iterative refinement of the network parameters 𝜃

▪ GD uses the opposite direction of the gradient of the loss with respect to the NN 
parameters (i.e.,𝛻ℒ 𝜃 = Τ𝜕ℒ 𝜕𝜃𝑖  ) for updating  𝜃

o The gradient of the loss function 𝛻ℒ 𝜃  gives the direction of fastest increase of the loss function 
ℒ 𝜃  when the parameters 𝜃 are changed

Training Neural Networks

ℒ 𝜃

𝜃𝑖

𝜕ℒ

𝜕𝜃𝑖
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Gradient Descent Algorithm

• Steps in the gradient descent algorithm:

1. Randomly initialize the model parameters, 𝜃0

2. Compute the gradient of the loss function at the initial parameters 𝜃0: 𝛻ℒ 𝜃0

3. Update the parameters as: 𝜃𝑛𝑒𝑤 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

o Where α is the learning rate

4. Go to step 2 and repeat (until a terminating criterion is reached)

Training Neural Networks

Loss ℒ 

Parameters 𝜃

Global loss minimum ℒ𝑚𝑖𝑛

Gradient 𝛻ℒ =
𝜕ℒ

𝜕𝜃
 Initial 

parameters 
𝜃0

Parameter update: 𝜃𝑛𝑒𝑤= 𝜃 − 𝛼𝛻ℒ 𝜃0
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Gradient Descent Algorithm

• Example: a NN with only 2 parameters 𝑤1 and 𝑤2, i.e., 𝜃 = 𝑤1, 𝑤2

▪ The different colors represent the values of the loss (minimum loss 𝜃∗ is ≈ 1.3)

Training Neural Networks
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Slide credit: Hung-yi Lee – Deep Learning Tutorial



38

Gradient Descent Algorithm

• Example (contd.)

Training Neural Networks
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Slide credit: Hung-yi Lee – Deep Learning Tutorial

2. Compute the gradient 
at 𝜃𝑜𝑙𝑑, 𝛻ℒ 𝜃𝑜𝑙𝑑

3. Times the learning rate 
𝜂, and update 𝜃,

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼𝛻ℒ 𝜃𝑜𝑙𝑑

4. Go to step 2, repeat
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Gradient Descent Algorithm

• Gradient descent algorithm stops when a local minimum of the loss surface is 
reached

▪ GD does not guarantee reaching a global minimum

▪ However, empirical evidence suggests that GD works well for NNs

Training Neural Networks

ℒ 𝜃  

𝜃

Picture from: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/
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Gradient Descent Algorithm

• For most tasks, the loss surface ℒ 𝜃  is highly complex (and non-convex)

Training Neural Networks

ℒ

𝑤1 𝑤2

Slide credit: Hung-yi Lee – Deep Learning Tutorial

• Random initialization in NNs results 
in different initial parameters 𝜃0 
every time the NN is trained

▪ Gradient descent may reach different 
minima at every run

▪ Therefore, NN will produce different 
predicted outputs 

• In addition, currently we don’t have 
algorithms that guarantee reaching a 
global minimum for an arbitrary loss 
function
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Backpropagation

• Modern NNs employ the backpropagation method for calculating the gradients of 
the loss function 𝛻ℒ 𝜃 = Τ𝜕ℒ 𝜕𝜃𝑖

▪ Backpropagation is short for “backward propagation”

• For training NNs, forward propagation (forward pass) refers to passing the inputs 
𝑥 through the hidden layers to obtain the model outputs (predictions) 𝑦

▪ The loss ℒ 𝑦, ො𝑦  function is then calculated 

▪ Backpropagation traverses the network in reverse order, from the outputs 𝑦 backward 
toward the inputs 𝑥 to calculate the gradients of the loss 𝛻ℒ 𝜃

▪ The chain rule is used for calculating the partial derivatives of the loss function with 
respect to the parameters 𝜃 in the different layers in the network

• Each update of the model parameters 𝜃 during training takes one forward and one 
backward pass (e.g., of a batch of inputs)

• Automatic calculation of the gradients (automatic differentiation) is available in all 
current deep learning libraries

▪ It significantly simplifies the implementation of deep learning algorithms, since it 
obviates deriving the partial derivatives of the loss function by hand

Training Neural Networks
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Mini-batch Gradient Descent

• It is wasteful to compute the loss over the entire training dataset to perform a 
single parameter update for large datasets

▪ E.g., ImageNet has 14M images

▪ Therefore, GD (a.k.a. vanilla GD) is almost always replaced with mini-batch GD

• Mini-batch gradient descent

▪ Approach:

o Compute the loss ℒ 𝜃  on a mini-batch of images, update the parameters 𝜃, and repeat until all 
images are used

o At the next epoch, shuffle the training data, and repeat the above process

▪ Mini-batch GD results in much faster training

▪ Typical mini-batch size: 32 to 256 images

▪ It works because the gradient from a mini-batch is a good approximation of the gradient 
from the entire training set

Training Neural Networks
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Stochastic Gradient Descent

• Stochastic gradient descent

▪ SGD uses mini-batches that consist of a single input example

o E.g., one image mini-batch

▪ Although this method is very fast, it may cause significant fluctuations in the loss 
function

o Therefore, it is less commonly used, and mini-batch GD is preferred

▪ In most DL libraries, SGD typically means a mini-batch GD (with an option to add 
momentum)

Training Neural Networks
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Problems with Gradient Descent

• Besides the local minima problem, the GD algorithm can be very slow at plateaus, 
and it can get stuck at saddle points

Training Neural Networks

cost ℒ 𝜃

Very slow at the 
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𝜃
Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Gradient Descent with Momentum

• Gradient descent with momentum uses the momentum of the gradient for 
parameter optimization

Training Neural Networks
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Gradient = 0

Negative of Gradient
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Gradient Descent with Momentum

• Parameters update in GD with momentum at iteration 𝑡: 𝜃𝑡 = 𝜃𝑡−1 − 𝑉𝑡

o Where: 𝑉𝑡= 𝛽𝑉𝑡−1 + 𝛼𝛻ℒ 𝜃𝑡−1

o I.e., 𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝛻ℒ 𝜃𝑡−1 − 𝛽𝑉𝑡−1

• Compare to vanilla GD: 𝜃𝑡 = 𝜃𝑡−1 − 𝛼𝛻ℒ 𝜃𝑡−1

▪ Where 𝜃𝑡−1 are the parameters from the previous iteration 𝑡 − 1

• The term 𝑉𝑡 is called momentum

▪ This term accumulates the gradients from the past several steps, i.e., 

𝑉𝑡= 𝛽𝑉𝑡−1 + 𝛼𝛻ℒ 𝜃𝑡−1  
= 𝛽 𝛽𝑉𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−1

= 𝛽2𝑉𝑡−2 + 𝛽𝛼𝛻ℒ 𝜃𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−1

= 𝛽3𝑉𝑡−3 + 𝛽2𝛼𝛻ℒ 𝜃𝑡−3 + 𝛽𝛼𝛻ℒ 𝜃𝑡−2 + 𝛼𝛻ℒ 𝜃𝑡−1

▪ This term is analogous to a momentum of a heavy ball rolling down the hill 

• The parameter 𝛽 is referred to as a coefficient of momentum

▪ A typical value of the parameter 𝛽 is 0.9

• This method updates the parameters 𝜃 in the direction of the weighted average of 
the past gradients

Training Neural Networks
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Nesterov Accelerated Momentum

• Gradient descent with Nesterov accelerated momentum 

▪ Parameter update: 𝜃𝑡 = 𝜃𝑡−1 − 𝑉𝑡

o Where: 𝑉𝑡= 𝛽𝑉𝑡−1 + 𝛼𝛻ℒ 𝜃𝑡−1 + 𝛽𝑉𝑡−1

▪ The term 𝜃𝑡−1 + 𝛽𝑉𝑡−1 allows to predict the position of the parameters in the next step 
(i.e., 𝜃𝑡  ≈ 𝜃𝑡−1 + 𝛽𝑉𝑡−1)

▪ The gradient is calculated with respect to the approximate future position of the 
parameters in the next iteration, 𝜃𝑡, calculated at iteration 𝑡 − 1

Training Neural Networks

Picture from: https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12
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Adam

• Adaptive Moment Estimation (Adam)

▪ Adam combines insights from the momentum optimizers that accumulate the values of 
past gradients, and it also introduces new terms based on the second moment of the 
gradient

o Similar to GD with momentum, Adam computes a weighted average of past gradients (first 
moment of the gradient), i.e., 𝑉𝑡= 𝛽1𝑉𝑡−1 + 1 − 𝛽1 𝛻ℒ 𝜃𝑡−1

o Adam also computes a weighted average of past squared gradients (second moment of the 

gradient), , i.e., 𝑈𝑡= 𝛽2𝑈𝑡−1 + 1 − 𝛽2 𝛻ℒ 𝜃𝑡−1 2

▪ The parameter update is:𝜃𝑡 = 𝜃𝑡−1 − 𝛼
෠𝑉𝑡

෡𝑈𝑡+𝜖

o Where: ෠𝑉𝑡 =
𝑉𝑡

1−𝛽1
 and ෡𝑈𝑡 =

𝑈𝑡

1−𝛽2

o The proposed default values are 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8

• Other commonly used optimization methods include:

▪ Adagrad, Adadelta, RMSprop, Nadam, etc.

▪ Most commonly used optimizers nowadays are Adam and SGD with momentum

Training Neural Networks
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Learning Rate

• Learning rate

▪ The gradient tells us the direction in which the loss has the steepest rate of increase, but it 
does not tell us how far along the opposite direction we should step

▪ Choosing the learning rate (also called the step size) is one of the most important hyper-
parameter settings for NN training

Training Neural Networks
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Learning Rate

• Training loss for different learning rates

▪ High learning rate: the loss increases or plateaus too quickly

▪ Low learning rate: the loss decreases too slowly (takes many epochs to reach a solution)

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/
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Learning Rate Scheduling

• Learning rate scheduling is applied to change the values of the learning rate during 
the training

▪ Annealing is reducing the learning rate over time (a.k.a. learning rate decay)

o Approach 1: reduce the learning rate by some factor every few epochs

• Typical values: reduce the learning rate by a half every 5 epochs, or divide by 10 every 20 epochs

o Approach 2: exponential or cosine decay gradually reduce the learning rate over time

o Approach 3: reduce the learning rate by a constant (e.g., by half) whenever the validation loss 
stops improving 

• In TensorFlow: tf.keras.callbacks.ReduceLROnPleateau()

• Monitor: validation loss, factor: 0.1 (i.e., divide by 10), patience: 10 (how many epochs to wait before applying it), 
Minimum learning rate: 1e-6 (when to stop)

▪ Warmup is gradually increasing the learning rate initially, and afterward let it cool down 
until the end of the training

Training Neural Networks
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Vanishing Gradient Problem

• In some cases, during training, the gradients can become either very small 
(vanishing gradients) of very large (exploding gradients)

▪ They result in very small or very large update of the parameters

▪ Solutions: change learning rate, ReLU activations, regularization, LSTM units in RNNs

Training Neural Networks
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Generalization

• Underfitting

▪ The model is too “simple” to represent 
all the relevant class characteristics

▪ E.g., model with too few parameters

▪ Produces high error on the training set 
and high error on the validation set

• Overfitting

▪ The model is too “complex” and fits 
irrelevant characteristics (noise) in the 
data

▪ E.g., model with too many parameters

▪ Produces low error on the training error 
and high error on the validation set

Generalization
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Overfitting

• Overfitting – a model with high capacity fits the noise in the data instead of the 
underlying relationship

Generalization

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

• The model may fit the training data 
very well, but fails to generalize to new 
examples (test or validation data)

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png
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Regularization: Weight Decay

• ℓ𝟐 weight decay

▪ A regularization term that penalizes large weights is added to the loss function

ℒ𝑟𝑒𝑔 𝜃 =  ℒ 𝜃 + 𝜆 ෍

𝑘

𝜃𝑘
2

▪ For every weight in the network, we add the regularization term to the loss value

o During gradient descent parameter update, every weight is decayed linearly toward zero

▪ The weight decay coefficient 𝜆 determines how dominant the regularization is during the 
gradient computation

Regularization

Data loss Regularization loss
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Regularization: Weight Decay

• Effect of the decay coefficient 𝜆  

▪ Large weight decay coefficient → penalty for weights with large values

Regularization
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Regularization: Weight Decay

• ℓ𝟏 weight decay

▪ The regularization term is based on the ℓ1 norm of the weights

ℒ𝑟𝑒𝑔 𝜃 =  ℒ 𝜃 + 𝜆 σ𝑘 𝜃𝑘  

▪ ℓ1 weight decay is less common with NN

o Often performs worse than ℓ2 weight decay

▪ It is also possible to combine ℓ1 and ℓ2 regularization 

o Called elastic net regularization

ℒ𝑟𝑒𝑔 𝜃 =  ℒ 𝜃 + 𝜆1 σ𝑘 𝜃𝑘 + 𝜆2 σ𝑘 𝜃𝑘
2 

Regularization
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Regularization: Dropout

• Dropout

▪ Randomly drop units (along with their connections) during training

▪ Each unit is retained with a fixed dropout rate p, independent of other units 

▪ The hyper-parameter p needs to be chosen (tuned)

o Often, between 20% and 50% of the units are dropped

Regularization

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Regularization: Dropout

• Dropout is a kind of ensemble learning

▪ Using one mini-batch to train one network with a slightly different architecture

Regularization
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Regularization: Early Stopping

• Early-stopping

▪ During model training, use a validation set

o E.g., validation/train ratio of about 25% to 75%

▪ Stop when the validation accuracy (or loss) has not improved after n epochs

o The parameter n is called patience 

Regularization

Stop training

validation



61

Batch Normalization

• Batch normalization layers act similar to the data preprocessing steps mentioned 
earlier

▪ They calculate the mean μ and variance σ of a batch of input data, and normalize the 
data x to a zero mean and unit variance

▪ I.e., ො𝑥 =
𝑥−𝜇

𝜎

• BatchNorm layers alleviate the problems of proper initialization of the parameters 
and hyper-parameters

▪ Result in faster convergence training, allow larger learning rates

▪ Reduce the internal covariate shift

• BatchNorm layers are inserted immediately after convolutional layers or fully-
connected layers, and before activation layers

▪ They are very common with convolutional NNs

Regularization
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Hyper-parameter Tuning

• Training NNs can involve setting many hyper-parameters

• The most common hyper-parameters include:

▪ Number of layers, and number of neurons per layer

▪ Initial learning rate

▪ Learning rate decay schedule (e.g., decay constant)

▪ Optimizer type

• Other hyper-parameters may include:

▪ Regularization parameters (ℓ2 penalty, dropout rate)

▪ Batch size

▪ Activation functions

▪ Loss function

• Hyper-parameter tuning can be time-consuming for larger NNs

Hyper-parameter Tuning
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Hyper-parameter Tuning

• Grid search

▪ Check all values in a range with a step value 

• Random search

▪ Randomly sample values for the parameter

▪ Often preferred to grid search

• Bayesian hyper-parameter optimization

▪ Is an active area of research

Hyper-parameter Tuning
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k-Fold Cross-Validation

• Using k-fold cross-validation for hyper-parameter tuning is common when the 
size of the training data is small

▪ It also leads to a better and less noisy estimate of the model performance by averaging 
the results across several folds

• E.g., 5-fold cross-validation (see the figure on the next slide)

1. Split the train data into 5 equal folds

2. First use folds 2-5 for training and fold 1 for validation

3. Repeat by using fold 2 for validation, then fold 3, fold 4, and fold 5

4. Average the results over the 5 runs (for reporting purposes)

5. Once the best hyper-parameters are determined, evaluate the model on the test data 

k-Fold Cross-Validation



65

k-Fold Cross-Validation

• Illustration of a 5-fold cross-validation

k-Fold Cross-Validation

Picture from: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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Ensemble Learning

• Ensemble learning is training multiple classifiers separately and combining their 
predictions 

▪ Ensemble learning often outperforms individual classifiers

▪ Better results obtained with higher model variety in the ensemble

▪ Bagging (bootstrap aggregating)

o Randomly draw subsets from the training set (i.e., bootstrap samples)

o Train separate classifiers on each subset of the training set

o Perform classification based on the average vote of all classifiers

▪ Boosting

o Train a classifier, and apply weights on the training set (apply higher weights on misclassified 
examples, focus on “hard examples”)

o Train new classifier, reweight training set according to prediction error

o Repeat

o Perform classification based on weighted vote of the classifiers

Ensemble Learning
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Deep vs Shallow Networks

• Deeper networks perform better than shallow networks

▪ But only up to some limit: after a certain number of layers, the performance of deeper 
networks plateaus

Deep vs Shallow Networks

Slide credit: Hung-yi Lee – Deep Learning Tutorial
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Convolutional Neural Networks (CNNs)

• Convolutional neural networks (CNNs) were primarily designed for image data

• CNNs use a convolutional operator for extracting data features

▪ Allows parameter sharing

▪ Efficient to train

▪ Have less parameters than NNs with fully-connected layers

• CNNs are robust to spatial translations of objects in images

• A convolutional filter slides (i.e., convolves) across the image

Convolutional Neural Networks

Input matrix
Convolutional 

3x3 filter

Picture from: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
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Convolutional Neural Networks (CNNs)

• When the convolutional filters are scanned over the image, they capture useful 
features

▪ E.g., edge detection by convolutions

Convolutional Neural Networks
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Convolutional Neural Networks (CNNs)

• In CNNs, hidden units in a layer are only connected to a small region of the layer 
before it (called local receptive field)

▪ The depth of each feature map corresponds to the number of convolutional filters used at 
each layer

Convolutional Neural Networks
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Slide credit: Param Vir Singh – Deep Learning
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Convolutional Neural Networks (CNNs)

• Max pooling: reports the maximum output within a rectangular neighborhood

• Average pooling: reports the average output of a rectangular neighborhood

• Pooling layers reduce the spatial size of the feature maps

▪ Reduce the number of parameters, prevent overfitting

Convolutional Neural Networks
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Convolutional Neural Networks (CNNs)

• Feature extraction architecture

▪ After 2 convolutional layers, a max-pooling layer reduces the size of the feature maps 
(typically by 2)

▪ A fully convolutional and a softmax layers are added last to perform classification

Convolutional Neural Networks
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Residual CNNs

• Residual networks (ResNets)

▪ Introduce “identity” skip connections

o Layer inputs are propagated and added to the layer output

o Mitigate the problem of vanishing gradients during training

o Allow training very deep NN (with over 1,000 layers)

▪ Several ResNet variants exist: 18, 34, 50, 101, 152, and 200 layers

▪ Are used as base models of other state-of-the-art NNs 

o Other similar models: ResNeXT, DenseNet

Convolutional Neural Networks
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Recurrent Neural Networks (RNNs)

• Recurrent NNs are used for modeling sequential data and data with varying length 
of inputs and outputs

▪ Videos, text, speech, DNA sequences, human skeletal data

• RNNs introduce recurrent connections between the neurons

▪ This allows processing sequential data one element at a time by selectively passing 
information across a sequence

▪ Memory of the previous inputs is stored in the model’s internal state and affect the 
model predictions

▪ Can capture correlations in sequential data

• RNNs use backpropagation-through-time for training

• RNNs are more sensitive to the vanishing gradient problem than CNNs

Recurrent Neural Networks
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Recurrent Neural Networks (RNNs)

• RNN use same set of weights 𝑤ℎ and 𝑤𝑥 across all time steps

▪ A sequence of hidden states ℎ𝑜 , ℎ𝑜ℎ2, ℎ3, …  is learned, which represents the memory of 
the network

▪ The hidden state at step t, ℎ 𝑡 , is calculated based on the previous hidden state ℎ 𝑡 − 1  
and the input at the current step 𝑥 𝑡 , i.e., ℎ 𝑡 = 𝑓ℎ 𝑤ℎ ∗ ℎ 𝑡 − 1 + 𝑤𝑥 ∗ 𝑥 𝑡

▪ The function 𝑓ℎ ∙  is a nonlinear activation function, e.g., ReLU or tanh

• RNN shown rolled over time

Recurrent Neural Networks
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Recurrent Neural Networks (RNNs)

• RNNs can have one of many inputs and one of many outputs

Recurrent Neural Networks
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Bidirectional RNNs

• Bidirectional RNNs incorporate both forward and backward passes through 
sequential data

▪ The output may not only depend on the previous elements in the sequence,  but also on 
future elements in the sequence

▪ It resembles two RNNs stacked on top of each other

Recurrent Neural Networks

ℎ𝑡 =  𝜎(𝑊(ℎℎ)ℎ𝑡+1 + 𝑊(ℎ𝑥)𝑥𝑡)
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Outputs both past and future elements

Slide credit: Param Vir Singh – Deep Learning
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LSTM Networks

• Long Short-Term Memory (LSTM) networks are a variant of RNNs

• LSTM mitigates the vanishing/exploding gradient problem

▪ Solution: a Memory Cell, updated at each step in the sequence

• Three gates control the flow of information to and from the Memory Cell

▪ Input Gate: protects the current step from irrelevant inputs

▪ Output Gate: prevents current step from passing irrelevant information to later steps

▪ Forget Gate: limits information passed from one cell to the next

• Most modern RNN models use either LSTM units or other more advanced types of 
recurrent units (e.g., GRU units)

Recurrent Neural Networks
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LSTM Networks

• LSTM cell

▪ Input gate, output gate, forget gate, memory cell 

▪ LSTM can learn long-term correlations within data sequences

Recurrent Neural Networks



The Encoder-Decoder Model with RNNs

• We introduce a new model, the encoder-decoder model, which is 
used when we are taking an input sequence and translating it to an 
output sequence x that is of a different length than the input, and 
doesn’t align with it in a word-to-word way.

• Encoder-decoder models are used especially for tasks like machine 
translation, where the input sequence and output sequence can 
have different lengths and the mapping between a token in the input 
and a token in the output can be very indirect (in some languages the 
verb appears at the beginning of the sentence; in other languages at 
the end.)

• Encoder-decoder networks, sometimes called sequence-to-
sequence networks, are models capable of generating contextually 
appropriate, arbitrary length, output sequences given an input 
sequence. Encoder-decoder networks have been applied to a very 
wide range of applications including summarization, question 
answering, and dialogue, but they are particularly popular for 
machine translation.
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Demo: Chat-bot



Sequence-to-sequence 
Auto-encoder

RNN Decoder
x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3
x4

RNN Encoder

audio segment

acoustic features

The RNN encoder and 
decoder are jointly trained.

Input acoustic features



The encoder-decoder architecture

• The key idea underlying these networks is the use of an encoder network that 
takes an input sequence and creates a contextualized representation of it, often 
called the context. This representation is then passed to a decoder which 
generates a task specific output sequence. Fig. 9.16 illustrates the architecture.
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A translation model using an 
encoder-decoder 
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A translation model using an encoder-
decoder 
• To translate a source text, we run it 

through the network performing 
forward inference to generate hidden 
states until we get to the end of the 
source. 

• Then we begin autoregressive 
generation, asking for a word in the 
context of the hidden layer from the 
end of the source input as well as the 
end-of-sentence marker. 

• Subsequent words are conditioned 
on the previous hidden state and the 
embedding for the last word 
generated.
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A translation model using an 
encoder-decoder 

• The entire purpose of the encoder is to generate a contextualized representation of the input. This 
representation is embodied in the final hidden state of the encoder, ℎ𝑛

𝑒 . This representation, also called c for 
context, is then passed to the decoder.

• The decoder network on the right takes this state and uses it to initialize the first hidden state of the decoder. 
That is, the first decoder RNN cell uses c as its prior hidden state ℎ0

𝑑 .

• The decoder autoregressively generates a sequence of outputs, an element at a time, until an end-of-
sequence marker is generated. Each hidden state is conditioned on the previous hidden state and the output 
generated in the previous state.
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Training the Encoder-Decoder Model

• Encoder-decoder architectures are trained end-to-end, 
just as with the RNN language models of Chapter 9. 

• Each training example is a tuple of paired strings, a 
source and a target. Concatenated with a separator 
token, these source-target pairs can now serve as 
training data.

• For MT, the training data typically consists of sets of 
sentences and their translations. These can be drawn 
from standard datasets of aligned sentence pairs.
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Training the Encoder-Decoder
Model

• The network is given the source text and then starting with the separator token is 
trained autoregressively to predict the next word, as shown in Fig. 9.20. 

• The decoder during inference uses its own estimated output. Thus the decoder will 
tend to deviate more and more from the gold target sentence as it keeps generating 
teacher forcing more tokens.

• In training, therefore, it is more common to use teacher forcing in the decoder.

• Teacher forcing means that we force the system to use the gold target token from 

training as the next input xt+1, rather than allowing it to rely on the (possibly 

erroneous) decoder output ො𝑦𝑡. This speeds up training.
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Training the Encoder-Decoder Model
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Attention

• For many applications, it helps to add “attention” to RNNs.

• Allows network to learn to attend to different parts of the 
input at different time steps, shifting its attention to focus on 
different aspects during its processing.

• Used in image captioning to focus on different parts of an 
image when generating different parts of the output 
sentence.

• In MT, allows focusing attention on different parts of the 
source sentence when generating different parts of the 
translation.
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Attention for Image Captioning
(Xu, et al. 2015)
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Attention
• The simplicity of the encoder-decoder model is its clean separation of the encoder— which builds a representation of the source 

text—from the decoder, which uses this context to generate a target text.

• In the model as we’ve described it so far, this context vector is hn, the hidden state of the last (nth) time step of the source text.

• This final hidden state is thus acting as a bottleneck: it must represent absolutely everything about the meaning of the source 
text, since the only thing the decoder knows about the source text is what’s in this context vector (Fig. 9.21).

• Information at the beginning of the sentence, especially for long sentences, may not be equally well represented in the context vector.
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Attention definition

•A mechanism for helping compute the embedding 
for a token by selectively attending to and 
integrating information from surrounding tokens 
(at the previous layer).

•More formally: a method for doing a weighted 
sum of vectors.



Attention Mechanism
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Multihead Attention
• The different words in a sentence can relate to each other in many 

different ways simultaneously. For example, distinct syntactic, 
semantic, and discourse relationships can hold between verbs and 
their arguments in a sentence. 

• It would be difficult for a single transformer block to learn to capture all 
of the different kinds of parallel relations among its inputs. 

• Transformers address this issue with multihead self-attention layers. 
• These are sets of self-attention layers, called heads, that reside in 

parallel layers at the same depth in a model, each with its own set of 
parameters.

• Given these distinct sets of parameters, each head can learn different 
aspects of the relationships that exist among inputs at the same level of 
abstraction.
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Multihead Attention

Source: 
https://jalammar.github.io/il
lustrated-transformer/
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HEAD 1: As we are encoding the word "it" in encoder 
#5 (the top encoder in the stack), part of the 
attention mechanism was focusing on "The  Animal", 
and baked a part of its representation into the 
encoding of "it".

HEAD 2: As we encode the word "it", one attention head is 
focusing most on "the animal", while another is focusing on 
"tired" -- in a sense, the model's representation of the word "it" 
bakes in some of the representation of both "animal" and 
"tired". 
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Transformers

• Transformers map sequences of input vectors (x1….,xn) to sequences of output vectors 
(y1,…,yn) of the same length. 

• Transformers are made up of stacks of transformer blocks, each of which is a multilayer 
network made by combining simple linear layers, feedforward networks, and self-
attention layers, the key innovation of transformers.

• Self-attention allows a network to directly extract and use information from arbitrarily large 
contexts without the need to pass it through intermediate recurrent connections as in RNNs.



Summary
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Transformers as Language Models
• We’ve seen all the major components of transformers, let’s examine how to deploy them as language models via self-

supervised learning.

• Given a training corpus of plain text we’ll in a sequence yt , using cross-entropy loss. train the model autoregressively 
to predict the next token  (Recall from Section 9.3.3 that using a language model to incrementally generate words by repeatedly sampling the next word conditioned 
on our previous choices is called autoregressive generation or causal LM generation.)

• Fig. 10.7 illustrates the general training approach. At each step, given all the preceding words, the final transformer 
layer produces an output distribution over the entire vocabulary. During training, the probability assigned to the 
correct word is used to calculate the cross-entropy loss for each item in the sequence
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Explosion of Pre-trained LMs
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