ISTANBUL MEDIPOL UNIVERSITY SYLLABUS ## Artificial Intelligence in Medicine - II | | | | 202 | 3 Fall Sem | | | Line | - 11 | | | | |--|---|--|----------------------------|----------------|------|--------------|------|-----------|--------------------|---------------------------|--| | Course | | | Course | | | Weekly Credi | | | | Weekly Class | | | Code | Со | urse N | ame | Туре | T | Α | L | S | ECTS | Schedule | | | COE31496 | | | ntelligence in | Selective | 2 | 0 | 0 | 3 | 4 | | | | 3 | Me | edicine | | | | | | | | | | | Prerequisit | sit Artificial Intelligence in Proventisite to | | | | | | | | | | | | е | Medicine I Prerequisite to | | | | | | | | | | | | Lecturer | Prof. Dr. Selim Akyokuş Office Hours | | | | | | | | | | | | E-mail | Prof. Dr. Selim Akyokuş sakyokus@medipol.edu.tr | | | | | Schedule | | | TBA | | | | Phone | Office / Room I | | | | | | n No | ТВА | | | | | Assistants | | | | | | | | | | | | | E-mail | Th: | | | | | | | | | and 6.4 | | | | This course provides an in-depth exploration of the applications, challenges, and future directions of Artificial Intelligence (AI) in the field of medicine. Students will learn the | | | | | | | | | | | | C | fundamentals of AI, machine learning, and data science, and how these technologies a | | | | | | | | | | | | Course
Objective | | transforming healthcare, from diagnostics to treatment planning and patient care. Students wil
learn about various AI techniques and their implemention in medical practice and in their
medical education. The course will provide applications that will include AI in diagnosticis, | | | | | | | | | | | s | me | | | | | | | | | | | | | | treatment, patient care, and image/data analysis. The course combines theoretical concepts with practical case studies and hands-on exercises/projects. | | | | | | | | | | | man proceed and states and nation of exercises projects. | Textbook | There are no required textbooks for this course. Reference and reading materials will be | | | | | | | | | | | | · CALDOOR | pro | provided via the course professor via Microsoft Teams. | After successful completion of the course, the student will be able to: 1 Understand the fundamental concepts of AI and machine learning. | | | | | | | | | | | | | 1 | | | | | | | | | aging nemonalized | | | | Analyze the role of Al in various medical fields, including diagnostics, imaging, personalized medicine, and drug discovery. | | | | | | | | | | | | Learning
Outcomes | 3 | Learn a | and apply AI models to | o solve specif | | | | | | | | | | Gain hands-on experience with AI tools and platforms through practical exercises and | | | | | | | | | exercises and | | | | projects. Stay informed about the latest advancements, research studies, and trends in Al and | | | | | | | | | | | | | bealthcare. | | | | | | | | | | | | Teaching | Lectures and discussions in class. Homeworks and team project assignments, final exam. | | | | | | | | | | | | Methods
WEEK | TOPIC | | | | | | | | REFERENCE | | | | | Introduction to Al Methods and their Applications in Medicine Lecture Notes 1 | | | | | | | | | | | | | Machine Learning Basics | | | | | | | | Lecture Notes 2 | | | | Week 3 | Data Collection and Preprocessing | | | | | | | | Lecture Notes 3 | | | | | | | | | | | | | Lecture Notes 4 | | | | | Supervised Learning | | | | | | | | _ | | | | Week 5 | Unsupervised Learning | | | | | | | | Lecture Notes 5 | | | | Week 6 | Model Evaluation and Performance Metrics | | | | | | | | Lecture Notes 6 | | | | Week 7 | Deep Learning in Medicine Lecture Notes 7 | | | | | | | | | Notes 7 | | | Week 8 | Medical Imaging and AI | | | | | | | | Lecture Notes 8 | | | | Week 9 | Natural Language Processing (NLP) in Healthcare | | | | | | | | Lecture Notes 9 | | | | week
Week | Al in Diagnostics and Disease Prediction | | | | | | | | Lecture Notes 10 | | | | week
11
Week | Al in Personalized Medicine, Treatment Planning, Drug Discovery | | | | | | | | Lecture Notes 11 | | | | 12
Week | | | | | | | | | | Notes 12 | | | 13 | Challenges and Limitations of AI in Medicine, and Future Trends Lecture Notes 13 | | | | | | | | | | | | Week
14 | Cours | e Reviev | w and Project Present | ations | | | | | Lecture | Notes 14 | | | | | | Evaluation Tool | | Q | uant | ity | We | ight | | | | Assess | | | Final Exam | | | 1 | | 30% | | | | | Meth
an | | | Midterm | | | 1 | | | 5% | | | | an
Crite | | | Homeworks | | | 2 | | | 0% | | | | Citte | | | Presentation Group project | | | 1 | | 5%
30% | | | | | | *** | ECT | | | | | | | etruction: English | | | | | | ECI | | Ш | | | | Langua | age of Ir | struction: English | | | Activity | Hour
s | Weeks | Student Workload
Hours | Activity | | | | Hours | Weeks | Student Workload
Hours | | | Lecture hours | s | 14 | 42.0 | Midterm | exan | n stu | dy | 10 | 1 | 10.0 | | | Homeworks/p | 4 6 24.0 Final exam study | | | | | 10 | 1 | 10.0 | | | | | roject
Home study | 2 | 12 | 24.0 | | | - 7 | | 10 | | 0.0 | | | nome study | 2 12 24.0 0.0 | | | | | | | | | | | | Recommended ECTS Credit = 4 | | | | | | | | | | | | | Recommended ECIS Credit = 4 | | | | | | | | | | | |