| Week | Topic(s) | Slide(s) | Additional Resources | 
				
					| Week 0I 02.10
 | Course 
					Information and Introduction 
 
 
 Chapter 1 - Introduction
 
 | 
 
 
 Lec 1:
					
					pdf
 | - 
					http://aima.cs.berkeley.edu/ -
					Berkeley AI 
					Materials
 -
					CS 188
 - 
					CS 188 Archives
 -
					Fall 
					2018 - CS 188
 
 - Video: Pieter 
					Abbeel giving the introductory lecture for the Spring 2014 
					Berkeley CS 188 course
 - Video: Dan 
					Klein giving the introductory lecture for the Fall 2013 
					Berkeley CS 188 course
 
 - Stanford AI  - Fall 2022 - CS 221
 | 
				
					| Week 02 09.10
 | Chapter 2 - Intelligent Agents 
 | Lec 2 :
					
					pdf | -
					
					https://inst.eecs.berkeley.edu/~cs188/fa23/assets/notes/cs188-fa23-note01.pdf | 
				
					| Week 03 16.10
 | Chapter 3 - Problem Solving by informed Search | Lec 3: 
					pdf,
					
					pptx | - Video: Dan 
					Klein giving the informed search lecture for the Fall 2012 
					Berkeley CS 188 course - Video: Pieter 
					Abbeel giving the informed search lecture for the Fall 2013 
					Berkeley CS 188 course
 - Video:
					Fall 
					2018 CS 188
 | 
				
					| Week 04 23.10
 | Chapter 3 - Problem Solving by informed Search | Lec 4: pdf,
					
					pptx | - Video: Dan 
					Klein giving the informed search lecture for the Fall 2012 
					Berkeley CS 188 course - Video: Pieter 
					Abbeel giving the informed search lecture for the Fall 2013 
					Berkeley CS 188 course
 - Video:
					Fall 
					2018 CS 188
 | 
				
					| Week 05 30.10
 | Chapter 4 - Search in Complex Environments | Lec 05: pdf,
					
					pptx |  | 
				
					| Week 06 06.11
 | Chapter 5 - Constraint 
					Satisfaction Problems | Lec 06: pdf,
					
					pptx | - Video: Pieter 
					Abbeel giving the first constraint satisfaction problem 
					lecture for the Spring 2013 Berkeley CS 188 course - 
					Video: Pieter 
					Abbeel giving the second constraint satisfaction problem for 
					the Spring 2014 Berkeley CS 188 course
   | 
				
					| Week 07 13.11
 | Chapter 6 - Adversarial 
					Search and Games | Lec 7:
					
					pdf,
					
					pptx | - Video: Pieter 
					Abbeel giving the adversarial search lecture for the Spring 
					2014 Berkeley CS 188 course - Video: Pieter 
					Abbeel giving the expectimax lecture for the Spring 2014 
					Berkeley CS 188 course
 | 
				
					| Week 08 | Midterm Week |  |  | 
				
					| Week 09 | Chapter 16 - Markov 
					Decision Process | Lec 8:
					
					pdf,
					
					pptx | - Video: Pieter 
					Abbeel giving the MDPs I lecture for the Spring 2014 
					Berkeley CS 188 course - Video: Pieter 
					Abbeel giving the MDPs II lecture for the Spring 2014 
					Berkeley CS 188 course
 -
					
					https://inst.eecs.berkeley.edu/~cs188/fa23/assets/lectures/cs188-fa23-lec08.pdf
 | 
				
					| Week 10 | Chapter 23 - Reinforcement 
					Learning | Lec 9:
					pdf,
					
					pptx | - Video: Pieter 
					Abbeel giving the reinforcement learning I lecture for the 
					Spring 2014 Berkeley CS 188 course- Video: Pieter 
					Abbeel giving the reinforcement learning II lecture for the 
					Spring 2014 Berkeley CS 188 course
 | 
				
					| Week 11 | Chapter 19,20,21 - Machine 
					Learning ML I   : Naive Bayes
 | Lec 10: pdf,
					pptx
 | - 
					https://inst.eecs.berkeley.edu/~cs188/fa23/ -
					
					https://inst.eecs.berkeley.edu/~cs188/fa18/
 -
					
					https://stanford-cs221.github.io/autumn2023/
 -
					
					https://stanford-cs221.github.io/spring2023/
 -
					
					PythonDataScienceHandbook - ML
 -
					DM 
					Slides
 
 CS 221 ML 1 : Linear regression and Linear 
					classification - Local Copy (PDF,
					
					code)
 | 
				
					| Week 12 | Chapter 19,20,21 - Machine 
					Learning ML II  :  Perceptrons and 
					Logistic Regression
 | Lec 11: pdf,
					pptx
 | -
					
					https://inst.eecs.berkeley.edu/~cs188/fa23/ -
					
					https://inst.eecs.berkeley.edu/~cs188/fa18/
 -
					
					https://stanford-cs221.github.io/autumn2023/
 -
					
					https://stanford-cs221.github.io/spring2023/
 -
					
					PythonDataScienceHandbook - ML
 
 CS 221 ML 2 
					: SGD, feature templates, non-linear features, neural 
					networks  - Local Copy (PDF,
					
					code)
 | 
				
					| Week 13 | Chapter 19,20,21 - Machine 
					Learning ML III : Optimization and Neural 
					Networks
 Neural Networks II and Decision Trees
 | Lec 12 : -
					pdf1,
					pptx1
 -
					
					pdf2,
					
					pptx2
 | -
					
					https://inst.eecs.berkeley.edu/~cs188/fa23/ -
					
					https://inst.eecs.berkeley.edu/~cs188/fa18/
 -
					
					https://stanford-cs221.github.io/autumn2023/
 -
					
					https://stanford-cs221.github.io/spring2023/
 -
					
					PythonDataScienceHandbook - ML
 
 CS 221 ML 3 : 
					Backpropagation, K-means, generalization, and best practices  
					- Local Copy (PDF)
 - K-means demo from CS221 (html)
 | 
				
					| Week 14 | Chapter 22 - Deep 
					Learning Presentations
 | Lec 13 | - Deep Learning Overview
					(PPTX) - CS 221 DL - Local Copy (pdf)
 - Dive into Deep Learning (html)
 - https://huggingface.co/docs/transformers/index
 -
					
					https://jalammar.github.io/illustrated-transformer/
 -
					
					https://en.wikipedia.org/wiki/Comparison_of_deep_learning_software
 -
					
					https://www.simplilearn.com/tutorials/deep-learning-tutorial/deep-learning-frameworks
 | 
				
					|  |  |  |  | 
				
					|  |  |  |  | 
				
					|  |  |  |  | 
				
					|  |  |  |  | 
				
					|  |  |  |  |